22,363 research outputs found

    Non-adiabatic molecular association in thermal gases driven by radio-frequency pulses

    Get PDF
    The molecular association process in a thermal gas of 85^{85}Rb is investigated where the effects of the envelope of the radio-frequency field are taken into account. For experimentally relevant parameters our analysis shows that with increasing pulse length the corresponding molecular conversion efficiency exhibits low-frequency interference fringes which are robust under thermal averaging over a wide range of temperatures. This dynamical interference phenomenon is attributed to St\"uckelberg phase accumulation between the low-energy continuum states and the dressed molecular state which exhibits a shift proportional to the envelope of the radio-frequency pulse intensity.Comment: 5 pages, 3 figure

    "So what will you do if string theory is wrong?"

    Full text link
    I briefly discuss the accomplishments of string theory that would survive a complete falsification of the theory as a model of nature and argue the possibility that such a survival may necessarily mean that string theory would become its own discipline, independently of both physics and mathematics

    Suppressed Andreev Reflection at the Normal-Metal / Heavy-Fermion Superconductor CeCoIn5_5 Interface

    Full text link
    Dynamic conductance spectra are taken from Au/CeCoIn5_5 point contacts in the Sharvin limit along the (001) and (110) directions. Our conductance spectra, reproducibly obtained over wide ranges of temperature, constitute the cleanest data sets ever reported for HFSs. A signature for the emerging heavy-fermion liquid is evidenced by the development of the asymmetry in the background in the normal state. Below TcT_c, an enhancement of the sub-gap conductance arising from Andreev reflection is observed, with the magnitude of ∼\sim 13.3 % and ∼\sim 11.8 % for the (001) and the (110) point contacts, respectively, an order of magnitude smaller than those observed in conventional superconductors but consistent with those in other HFSs. Our zero-bias conductance data for the (001) point contacts are best fit with the extended BTK model using the d-wave order parameter. The fit to the full conductance curve of the (001) point contact indicates the strong coupling nature (2Δ/kBTc=4.642\Delta/k_{B}T_c = 4.64). However, our observed suppression of both the Andreev reflection signal and the energy gap indicates the failure of existing models. We provide possible directions for theoretical formulations of the electronic transport across an N/HFS interface. Several qualitative features observed in the (110) point contacts provide the first clear spectroscopic evidence for the dx2−y2d_{x^2-y^2} symmetry.Comment: 13 pages, 7 figures, LaTeX, paper invited and submitted to SPIE Conference on Strongly Correlated Electron Materials: Physics and Nanoengineering, in San Diego, California, July 31 - August 4, 200

    Point-contact spectroscopy in heavy-fermion superconductors

    Get PDF
    We develop a minimal model to calculate point-contact spectra between a metallic tip and a superconducting heavy-fermion system. We apply our tunneling model to the heavy fermion CeCoIn5, both in the normal and superconducting state. In point-contact and scanning tunneling spectroscopy many heavy-fermion materials, like CeCoIn5, exhibit an asymmetric differential conductance, dI/dV, combined with a strongly suppressed Andreev reflection signal in the superconducting state. We argue that both features may be explained in terms of a multichannel tunneling model in the presence of localized states near the interface. We find that it is not sufficient to tunnel into two itinerant bands of light and heavy electrons to explain the Fano line shape of the differential conductance. Localized states in the bulk or near the interface are an essential component for quantum interference to occur when an electron tunnels from the metallic tip of the point contact into the heavy-fermion system.Comment: 13 pages, 9 figures. Accepted for publication in Physical Review

    ALMA Observations of a Candidate Molecular Outflow in an Obscured Quasar

    Full text link
    We present Atacama Large Millimeter/Submillimeter Array (ALMA) CO (1-0) and CO (3-2) observations of SDSS J135646.10+102609.0, an obscured quasar and ultra-luminous infrared galaxy (ULIRG) with two merging nuclei and a known 20-kpc-scale ionized outflow. The total molecular gas mass is M_{mol} ~ 9^{+19}_{-6} x 10^8 Msun, mostly distributed in a compact rotating disk at the primary nucleus (M_{mol} ~ 3 x 10^8 Msun) and an extended tidal arm (M_{mol} ~ 5 x 10^8 Msun). The tidal arm is one of the most massive molecular tidal features known; we suggest that it is due to the lower chance of shock dissociation in this elliptical/disk galaxy merger. In the spatially resolved CO (3-2) data, we find a compact (r ~ 0.3 kpc) high velocity (v ~ 500 km/s) red-shifted feature in addition to the rotation at the N nucleus. We propose a molecular outflow as the most likely explanation for the high velocity gas. The outflowing mass of M_{mol} ~ 7 x 10^7 Msun and the short dynamical time of t_{dyn} ~ 0.6 Myr yield a very high outflow rate of \dot{M}_{mol} ~ 350 Msun/yr and can deplete the gas in a million years. We find a low star formation rate (< 16 Msun/yr from the molecular content and < 21 Msun/yr from the far-infrared spectral energy distribution decomposition) that is inadequate to supply the kinetic luminosity of the outflow (\dot{E} ~ 3 x 10^43 erg/s). Therefore, the active galactic nucleus, with a bolometric luminosity of 10^46 erg/s, likely powers the outflow. The momentum boost rate of the outflow (\dot{p}/(Lbol/c) ~ 3) is lower than typical molecular outflows associated with AGN, which may be related to its compactness. The molecular and ionized outflows are likely two distinct bursts induced by episodic AGN activity that varies on a time scale of 10^7 yr.Comment: 16 pages, 7 figures, ApJ accepte
    • …
    corecore