7,862 research outputs found

    Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System

    Full text link
    We use the density matrix renormalization group (DMRG) to map out the ground state of a XY-spin chain coupled to dispersionless phonons of frequency ω% \omega . We confirm the existence of a critical spin-phonon coupling cω0.7% \alpha _c\propto \omega ^{0.7} for the onset of the spin gap bearing the signature of a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover when the spin-Peierls gap Δ\Delta is of order % \omega . In the classical regime, Δ>ω\Delta >\omega , the mean-field parameters are strongly renormalized by non-adiabatic corrections. This is the first application of the DMRG to phonons.Comment: 10 pages, 5 figures. To be published in PR

    Phase diagram of the one-dimensional Holstein model of spinless fermions

    Get PDF
    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalisation group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the anti-adiabatic regime and is consistent with renormalisation group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.Comment: Minor changes. 4 pages, 4 figures. To appear in Physical Review Letters 80 (1998) 560

    Head-on infall of two compact objects: Third post-Newtonian Energy Flux

    Full text link
    Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.Comment: 25 pages, 2 figures, This version includes the changes appearing in the Erratum published in Phys. Rev.

    Ground-state properties of the One-dimensional Kondo Lattice at partial Band-filling

    Full text link
    We compute the magnetic structure factor, the singlet correlation function and the momentum distribution of the one-dimensional Kondo lattice model at the density ρ=0.7\rho =0.7. The density matrix-renormalization group method is used. We show that in the weak-coupling regime, the ground state is paramagnetic. We argue that a Luttinger liquid description of the model in this region is consistent with our calculations . In the strong-coupling regime, the ground state becomes ferromagnetic. The conduction electrons show a spinless-fermion like behavior.Comment: 8 pages, Latex, 5 figures included, to be published in PRB (Rapid Communications

    Vibration control of the beam of the future linear collider

    Get PDF
    This paper proposes a new approach for beam stabilization of the future Compact LInear Collider (CLIC). The method attempts to increase the efficiency of traditional methods. It is composed of a hybrid adaptive filtering algorithm that uses both feedback and adaptive control. The scheme uses an estimate of the prediction error to update the adaptive filter's parameters. The strategy of this method is described considering the process environment. The method efficiency is evaluated, and it is demonstrated that it provides high damping, fast vibration suppression, good robustness and easy realization thanks to the simplicity of the computations
    corecore