889 research outputs found
Topologically confined states at corrugations of gated bilayer graphene
We investigate the electronic and transport properties of gated bilayer
graphene with one corrugated layer, which results in a stacking AB/BA boundary.
When a gate voltage is applied to one layer, topologically protected gap states
appear at the corrugation, which reveal as robust transport channels along the
stacking boundary. With increasing size of the corrugation, more localized,
quantum-well-like states emerge. These finite-size states are also conductive
along the fold, but in contrast to the stacking boundary states, which are
gapless, they present a gap. We have also studied periodic corrugations in
bilayer graphene; our findings show that such corrugations between AB- and
BA-stacked regions behave as conducting channels that can be easily identified
by their shape
Interface States in Carbon Nanotube Junctions: Rolling up graphene
We study the origin of interface states in carbon nanotube intramolecular
junctions between achiral tubes. By applying the Born-von Karman boundary
condition to an interface between armchair- and zigzag-terminated graphene
layers, we are able to explain their number and energies. We show that these
interface states, costumarily attributed to the presence of topological
defects, are actually related to zigzag edge states, as those of graphene
zigzag nanoribbons. Spatial localization of interface states is seen to vary
greatly, and may extend appreciably into either side of the junction. Our
results give an alternative explanation to the unusual decay length measured
for interface states of semiconductor nanotube junctions, and could be further
tested by local probe spectroscopies
Gate-controlled conductance through bilayer graphene ribbons
We study the conductance of a biased bilayer graphene flake with monolayer
nanoribbon contacts. We find that the transmission through the bilayer ribbon
strongly depends on the applied bias between the two layers and on the relative
position of the monolayer contacts. Besides the opening of an energy gap on the
bilayer, the bias allows to tune the electronic density on the bilayer flake,
making possible the control of the electronic transmission by an external
parameter.Comment: 5 pages, 5 figures include
Electronic transport through bilayer graphene flakes
We investigate the electronic transport properties of a bilayer graphene
flake contacted by two monolayer nanoribbons. Such a finite-size bilayer flake
can be built by overlapping two semiinfinite ribbons or by depositing a
monolayer flake onto an infinite nanoribbon. These two structures have a
complementary behavior, that we study and analyze by means of a tight-binding
method and a continuum Dirac model. We have found that for certain energy
ranges and geometries, the conductance of these systems oscillates markedly
between zero and the maximum value of the conductance, allowing for the design
of electromechanical switches. Our understanding of the electronic transmission
through bilayer flakes may provide a way to measure the interlayer hopping in
bilayer graphene.Comment: 11 pages, 8 figure
- …