3,140 research outputs found

    Disorder-driven splitting of the conductance peak at the Dirac point in graphene

    Full text link
    The electronic properties of a bricklayer model, which shares the same topology as the hexagonal lattice of graphene, are investigated numerically. We study the influence of random magnetic-field disorder in addition to a strong perpendicular magnetic field. We found a disorder-driven splitting of the longitudinal conductance peak within the narrow lowest Landau band near the Dirac point. The energy splitting follows a relation which is proportional to the square root of the magnetic field and linear in the disorder strength. We calculate the scale invariant peaks of the two-terminal conductance and obtain the critical exponents as well as the multifractal properties of the chiral and quantum Hall states. We found approximate values ν2.5\nu\approx 2.5 for the quantum Hall states, but ν=0.33±0.1\nu=0.33\pm 0.1 for the divergence of the correlation length of the chiral state at E=0 in the presence of a strong magnetic field. Within the central n=0n=0 Landau band, the multifractal properties of both the chiral and the split quantum Hall states are the same, showing a parabolic f[α(s)]f[\alpha(s)] distribution with α(0)=2.27±0.02\alpha(0)=2.27\pm 0.02. In the absence of the constant magnetic field, the chiral critical state is determined by α(0)=2.14±0.02\alpha(0)=2.14\pm 0.02

    Crossover from critical orthogonal to critical unitary statistics at the Anderson transition

    Full text link
    We report a novel scale-independent, Aharonov-Bohm flux controlled crossover from critical orthogonal to critical unitary statistics at the disorder induced metal insulator transition. Our numerical investigations show that at the critical point the level statistics are definitely distinct and determined by fundamental symmetries. The latter is similar to the behavior of the metallic phase known from random matrix theory. The Aharonov-Bohm flux dependent crossover is characteristic of the critical ensemble.Comment: 4 pages RevTeX, 4 epsf-figures included, to appear in Physical Review Letters (August 1996

    Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates

    Full text link
    The critical two-terminal conductance gcg_c and the spatial fluctuations of critical eigenstates are investigated for a disordered two dimensional model of non-interacting electrons subject to spin-orbit scattering (Ando model). For square samples, we verify numerically the relation σc=1/[2π(2D(1))]e2/h\sigma_c=1/[2\pi(2-D(1))] e^2/h between critical conductivity σc=gc=(1.42±0.005)e2/h\sigma_c=g_c=(1.42\pm 0.005) e^2/h and the fractal information dimension of the electron wave function, D(1)=1.889±0.001D(1)=1.889\pm 0.001. Through a detailed numerical scaling analysis of the two-terminal conductance we also estimate the critical exponent ν=2.80±0.04\nu=2.80\pm 0.04 that governs the quantum phase transition.Comment: IOP Latex, 7 figure

    Universal Conductance and Conductivity at Critical Points in Integer Quantum Hall Systems

    Full text link
    The sample averaged longitudinal two-terminal conductance and the respective Kubo-conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, 0.60±0.02e2/h0.60\pm 0.02 e^2/h and 0.58±0.03e2/h0.58\pm 0.03 e^2/h, respectively. In the 2nd lowest Landau band, a critical conductance 0.61±0.03e2/h0.61\pm 0.03 e^2/h is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value 1/2e2/h1/2 e^2/h. We argue that this difference is due to the multifractal structure of critical wavefunctions, a property that should generically show up in the conductance at quantum critical points.Comment: 4 pages, 3 figure

    Tunneling edges at strong disorder

    Full text link
    Scattering between edge states that bound one-dimensional domains of opposite potential or flux is studied, in the presence of strong potential or flux disorder. A mobility edge is found as a function of disorder and energy, and we have characterized the extended phase. "paper_FINAL.tex" 439 lines, 20366 characters In the presence of flux and/or potential disorder, the localization length scales exponentially with the width of the barrier. We discuss implications for the random-flux problem.Comment: RevTeX, 4 page

    Boundary multifractality in critical 1D systems with long-range hopping

    Get PDF
    Boundary multifractality of electronic wave functions is studied analytically and numerically for the power-law random banded matrix (PRBM) model, describing a critical one-dimensional system with long-range hopping. The peculiarity of the Anderson localization transition in this model is the existence of a line of fixed points describing the critical system in the bulk. We demonstrate that the boundary critical theory of the PRBM model is not uniquely determined by the bulk properties. Instead, the boundary criticality is controlled by an additional parameter characterizing the hopping amplitudes of particles reflected by the boundary.Comment: 7 pages, 4 figures, some typos correcte

    Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling

    Full text link
    The energy level statistics of 2D electrons with spin-orbit scattering are considered near the disorder induced metal-insulator transition. Using the Ando model, the nearest-level-spacing distribution is calculated numerically at the critical point. It is shown that the critical spacing distribution is size independent and has a Poisson-like decay at large spacings as distinct from the Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed Matter, in prin

    Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics

    Full text link
    We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known solutions for conservative systems can be used for an extension of the dynamics, which also includes elements such as the take-up/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically tractable model, while still covering important features of non-equilibrium systems. In our paper, this approach is used to derive a rather general swarm model that considers (a) the energetic conditions of swarming, i.e. for active motion, (b) interactions between the particles based on global couplings. We derive analytical expressions for the non-equilibrium velocity distribution and the mean squared displacement of the swarm. Further, we investigate the influence of different global couplings on the overall behavior of the swarm by means of particle-based computer simulations and compare them with the analytical estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref. updated. For related work see also: http://summa.physik.hu-berlin.de/~frank/active.htm
    corecore