2,949 research outputs found

    Engineering entanglement for metrology with rotating matter waves

    Get PDF
    Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation

    Quantum-enhanced gyroscopy with rotating anisotropic Bose–Einstein condensates

    Get PDF
    High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements

    Quantum metrology at the Heisenberg limit with ion traps

    Get PDF
    Sub-Planck phase-space structures in the Wigner function of the motional degree of freedom of a trapped ion can be used to perform weak force measurements with Heisenberg-limited sensitivity. We propose methods to engineer the Hamiltonian of the trapped ion to generate states with such small scale structures, and we show how to use them in quantum metrology applications.Comment: 10 pages, 6 figure

    Entanglement of superconducting charge qubits by homodyne measurement

    Full text link
    We present a scheme by which projective homodyne measurement of a microwave resonator can be used to generate entanglement between two superconducting charge qubits coupled to this resonator. The non-interacting qubits are initialised in a product of their ground states, the resonator is initialised in a coherent field state, and the state of the system is allowed to evolve under a rotating wave Hamiltonian. Making a homodyne measurement on the resonator at a given time projects the qubits into an state of the form (|gg> + exp(-i phi)|ee>)/sqrt(2). This protocol can produce states with a fidelity as high as required, with a probability approaching 0.5. Although the system described is one that can be used to display revival in the qubit oscillations, we show that the entanglement procedure works at much shorter timescales.Comment: 17 pages, 7 figure

    Preparing multi-partite entanglement of photons and matter qubits

    Full text link
    We show how to make event-ready multi-partite entanglement between qubits which may be encoded on photons or matter systems. Entangled states of matter systems, which can also act as single photon sources, can be generated using the entangling operation presented in quant-ph/0408040. We show how to entangle such sources with photon qubits, which may be encoded in the dual rail, polarization or time-bin degrees of freedom. We subsequently demonstrate how projective measurements of the matter qubits can be used to create entangled states of the photons alone. The state of the matter qubits is inherited by the generated photons. Since the entangling operation can be used to generate cluster states of matter qubits for quantum computing, our procedure enables us to create any (entangled) photonic quantum state that can be written as the outcome of a quantum computer.Comment: 10 pages, 4 figures; to appear in Journal of Optics

    Avatars and humans may not elicit the same accent-related biases in mock courtroom research

    Get PDF
    Introduction: Conducting research to better understand the role of extralegal factors in courtroom decision-making requires either labor intensive methods, such as simulating a trial, or approaches that are not ecologically valid, such as using short written case vignettes. If avatars could be used in simulated courtrooms, experiments could more easily manipulate extralegal variables for study without requiring significant resourcing, for example hiring actors and having access to a courtroom. The current study used previously developed stimulus materials of a human eyewitness in a courtroom and created a comparable avatar eyewitness and virtual courtroom to assess ratings of the human and avatar. Method: Participants (N = 703) saw one of 12 videos depicting an eyewitness on the stand at a criminal trial recounting a burglary. The design was a 2 × 2 × 3, mode of presentation (human or avatar), accent (General American English or non-standard) and country of origin (Germany, Mexico or Lebanon). Three actors voiced each human and avatar pair using General American English and one of the non-standard accents (German, Mexican or Lebanese) so that variation in ratings could be attributed to presentation mode, accent and country of origin. Results: An analysis of covariance revealed that the avatar witnesses were rated more favorably than the humans and there were no main effects of accent nor country of origin, contrary to previous research using the human video stimuli. A three-way interaction showed the Lebanese human non-standard accented witness was rated more poorly than her standard-accented counterpart, her avatar counterpart, and the Mexican and German human non-standard accented witnesses. Discussion: Findings reveal that avatar witnesses cannot yet reliably replace their human counterparts. Discussion as to what can be done in future to further investigate how to create courtroom stimulus materials is presented along with possible explanations as to the reasons for different findings in this research than previous studies

    Superconducting charge qubits from a microscopic many-body perspective

    Full text link
    The quantised Josephson junction equation that underpins the behaviour of charge qubits and other tunnel devices is usually derived through cannonical quantisation of the classical macroscopic Josephson relations. However, this approach may neglect effects due to the fact that the charge qubit consists of a superconducting island of finite size connected to a large superconductor. We show that the well known quantised Josephson equation can be derived directly and simply from a microscopic many-body Hamiltonian. By choosing the appropriate strong coupling limit we produce a highly simplified Hamiltonian that nevertheless allows us to go beyond the mean field limit and predict further finite-size terms in addition to the basic equation.Comment: Accepted for J Phys Condensed Matte

    Single photon quantum non-demolition in the presence of inhomogeneous broadening

    Get PDF
    Electromagnetically induced transparency (EIT) has been often proposed for generating nonlinear optical effects at the single photon level; in particular, as a means to effect a quantum non-demolition measurement of a single photon field. Previous treatments have usually considered homogeneously broadened samples, but realisations in any medium will have to contend with inhomogeneous broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys. Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an alternative mode of operation that is preferred in an inhomogeneous environment. We further show the implications of these results on a potential implementation in diamond containing nitrogen-vacancy colour centres. Our modelling shows that single mode waveguide structures of length 200ÎŒm200 \mu\mathrm{m} in single-crystal diamond containing a dilute ensemble of NV−^- of only 200 centres are sufficient for quantum non-demolition measurements using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv purpose

    Ancilla-based quantum simulation

    Full text link
    We consider simulating the BCS Hamiltonian, a model of low temperature superconductivity, on a quantum computer. In particular we consider conducting the simulation on the qubus quantum computer, which uses a continuous variable ancilla to generate interactions between qubits. We demonstrate an O(N^3) improvement over previous work conducted on an NMR computer [PRL 89 057904 (2002) & PRL 97 050504 (2006)] for the nearest neighbour and completely general cases. We then go on to show methods to minimise the number of operations needed per time step using the qubus in three cases; a completely general case, a case of exponentially decaying interactions and the case of fixed range interactions. We make these results controlled on an ancilla qubit so that we can apply the phase estimation algorithm, and hence show that when N \geq 5, our qubus simulation requires significantly less operations that a similar simulation conducted on an NMR computer.Comment: 20 pages, 10 figures: V2 added section on phase estimation and performing controlled unitaries, V3 corrected minor typo
    • 

    corecore