2,949 research outputs found
Engineering entanglement for metrology with rotating matter waves
Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation
Quantum-enhanced gyroscopy with rotating anisotropic BoseâEinstein condensates
High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements
Quantum metrology at the Heisenberg limit with ion traps
Sub-Planck phase-space structures in the Wigner function of the motional
degree of freedom of a trapped ion can be used to perform weak force
measurements with Heisenberg-limited sensitivity. We propose methods to
engineer the Hamiltonian of the trapped ion to generate states with such small
scale structures, and we show how to use them in quantum metrology
applications.Comment: 10 pages, 6 figure
Entanglement of superconducting charge qubits by homodyne measurement
We present a scheme by which projective homodyne measurement of a microwave
resonator can be used to generate entanglement between two superconducting
charge qubits coupled to this resonator. The non-interacting qubits are
initialised in a product of their ground states, the resonator is initialised
in a coherent field state, and the state of the system is allowed to evolve
under a rotating wave Hamiltonian. Making a homodyne measurement on the
resonator at a given time projects the qubits into an state of the form (|gg> +
exp(-i phi)|ee>)/sqrt(2). This protocol can produce states with a fidelity as
high as required, with a probability approaching 0.5. Although the system
described is one that can be used to display revival in the qubit oscillations,
we show that the entanglement procedure works at much shorter timescales.Comment: 17 pages, 7 figure
Preparing multi-partite entanglement of photons and matter qubits
We show how to make event-ready multi-partite entanglement between qubits
which may be encoded on photons or matter systems. Entangled states of matter
systems, which can also act as single photon sources, can be generated using
the entangling operation presented in quant-ph/0408040. We show how to entangle
such sources with photon qubits, which may be encoded in the dual rail,
polarization or time-bin degrees of freedom. We subsequently demonstrate how
projective measurements of the matter qubits can be used to create entangled
states of the photons alone. The state of the matter qubits is inherited by the
generated photons. Since the entangling operation can be used to generate
cluster states of matter qubits for quantum computing, our procedure enables us
to create any (entangled) photonic quantum state that can be written as the
outcome of a quantum computer.Comment: 10 pages, 4 figures; to appear in Journal of Optics
Avatars and humans may not elicit the same accent-related biases in mock courtroom research
Introduction: Conducting research to better understand the role of extralegal factors in courtroom decision-making requires either labor intensive methods, such as simulating a trial, or approaches that are not ecologically valid, such as using short written case vignettes. If avatars could be used in simulated courtrooms, experiments could more easily manipulate extralegal variables for study without requiring significant resourcing, for example hiring actors and having access to a courtroom. The current study used previously developed stimulus materials of a human eyewitness in a courtroom and created a comparable avatar eyewitness and virtual courtroom to assess ratings of the human and avatar.
Method: Participants (NâŻ=âŻ703) saw one of 12 videos depicting an eyewitness on the stand at a criminal trial recounting a burglary. The design was a 2 Ă 2 Ă 3, mode of presentation (human or avatar), accent (General American English or non-standard) and country of origin (Germany, Mexico or Lebanon). Three actors voiced each human and avatar pair using General American English and one of the non-standard accents (German, Mexican or Lebanese) so that variation in ratings could be attributed to presentation mode, accent and country of origin.
Results: An analysis of covariance revealed that the avatar witnesses were rated more favorably than the humans and there were no main effects of accent nor country of origin, contrary to previous research using the human video stimuli. A three-way interaction showed the Lebanese human non-standard accented witness was rated more poorly than her standard-accented counterpart, her avatar counterpart, and the Mexican and German human non-standard accented witnesses.
Discussion: Findings reveal that avatar witnesses cannot yet reliably replace their human counterparts. Discussion as to what can be done in future to further investigate how to create courtroom stimulus materials is presented along with possible explanations as to the reasons for different findings in this research than previous studies
Superconducting charge qubits from a microscopic many-body perspective
The quantised Josephson junction equation that underpins the behaviour of
charge qubits and other tunnel devices is usually derived through cannonical
quantisation of the classical macroscopic Josephson relations. However, this
approach may neglect effects due to the fact that the charge qubit consists of
a superconducting island of finite size connected to a large superconductor.
We show that the well known quantised Josephson equation can be derived
directly and simply from a microscopic many-body Hamiltonian. By choosing the
appropriate strong coupling limit we produce a highly simplified Hamiltonian
that nevertheless allows us to go beyond the mean field limit and predict
further finite-size terms in addition to the basic equation.Comment: Accepted for J Phys Condensed Matte
Single photon quantum non-demolition in the presence of inhomogeneous broadening
Electromagnetically induced transparency (EIT) has been often proposed for
generating nonlinear optical effects at the single photon level; in particular,
as a means to effect a quantum non-demolition measurement of a single photon
field. Previous treatments have usually considered homogeneously broadened
samples, but realisations in any medium will have to contend with inhomogeneous
broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys.
Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an
alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond containing nitrogen-vacancy colour centres. Our
modelling shows that single mode waveguide structures of length in single-crystal diamond containing a dilute ensemble of NV
of only 200 centres are sufficient for quantum non-demolition measurements
using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv
purpose
Ancilla-based quantum simulation
We consider simulating the BCS Hamiltonian, a model of low temperature
superconductivity, on a quantum computer. In particular we consider conducting
the simulation on the qubus quantum computer, which uses a continuous variable
ancilla to generate interactions between qubits. We demonstrate an O(N^3)
improvement over previous work conducted on an NMR computer [PRL 89 057904
(2002) & PRL 97 050504 (2006)] for the nearest neighbour and completely general
cases. We then go on to show methods to minimise the number of operations
needed per time step using the qubus in three cases; a completely general case,
a case of exponentially decaying interactions and the case of fixed range
interactions. We make these results controlled on an ancilla qubit so that we
can apply the phase estimation algorithm, and hence show that when N \geq 5,
our qubus simulation requires significantly less operations that a similar
simulation conducted on an NMR computer.Comment: 20 pages, 10 figures: V2 added section on phase estimation and
performing controlled unitaries, V3 corrected minor typo
- âŠ