106 research outputs found

    Human microglial cells synthesize albumin in brain

    Get PDF
    Albumin has been implicated in Alzheimer's disease since it can bind to and transport amyloid beta, the causative agent; albumin is also a potent inhibitor of amyloid beta polymerization. In a pilot phase study of Human Brain Proteome Project, we found evidence that albumin may be synthesized in immortalized human microglial cells, human primary microglial cells, and human fetal and adult brain tissues. We also found the synthesis and secretion is enhanced upon microglial activation by Amyloid [beta]~1-42~, lipopolysaccharide treatment or human Alzheimer's brain

    Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

    Get PDF
    Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging

    CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity

    Get PDF
    CCN1 (CYR61) stimulates active angiogenesis in various tumours, although the mechanism is largely unknown. Here, we report that CCN1 is a key regulator of endothelial tip cell activity in angiogenesis. Microvessel networks and directional vascular cell migration patterns were deformed in ccn1-knockdown zebrafish embryos. CCN1 activated VEGFR2 and downstream MAPK/PI3K signalling pathways, YAP/TAZ, as well as Rho effector mDia1 to enhance tip cell activity and CCN1 itself. VEGFR2 interacted with integrin αvβ3 through CCN1. Integrin αvβ3 inhibitor repressed tip cell number and sprouting in postnatal retinas from endothelial cell-specific Ccn1 transgenic mice, and allograft tumours in Ccn1 transgenic mice showed hyperactive vascular sprouting. Cancer patients with high CCN1 expression have poor survival outcomes and positive correlation with ITGAV and ITGB3 and high YAP/WWTR1. Thus, our data underscore the positive feedback regulation of tip cells by CCN1 through integrin αvβ3/VEGFR2 and increased YAP/TAZ activity, suggesting a promising therapeutic intervention for pathological angiogenesis. © 2019, Park et al.1

    Induction of Neuronal Death by Microglial AGE-Albumin: Implications for Alzheimer’s Disease

    Get PDF
    Advanced glycation end products (AGEs) have long been considered as potent molecules promoting neuronal cell death and contributing to neurodegenerative disorders such as Alzheimer’s disease (AD). In this study, we demonstrate that AGE-albumin, the most abundant AGE product in human AD brains, is synthesized in activated microglial cells and secreted into the extracellular space. The rate of AGE-albumin synthesis in human microglial cells is markedly increased by amyloid-β exposure and oxidative stress. Exogenous AGE-albumin upregulates the receptor protein for AGE (RAGE) and augments calcium influx, leading to apoptosis of human primary neurons. In animal experiments, soluble RAGE (sRAGE), pyridoxamine or ALT-711 prevented Aβ-induced neuronal death in rat brains. Collectively, these results provide evidence for a new mechanism by which microglial cells promote death of neuronal cells through synthesis and secretion of AGE-albumin, thereby likely contributing to neurodegenerative diseases such as AD

    TRAF6 Mediates IL-1β/LPS-Induced Suppression of TGF-β Signaling through Its Interaction with the Type III TGF-β Receptor

    Get PDF
    Transforming growth factor-β1 (TGF-β1) is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS) suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII), which is TGF-β-dependent and requires type I TGF-β receptor (TβRI) kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-βsignaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression

    Pyrogallol-Phloroglucinol-6,6-Bieckol Alleviates Obesity and Systemic Inflammation in a Mouse Model by Reducing Expression of RAGE and RAGE Ligands

    No full text
    Ecklonia cava (E. cava) can alleviate diet-induced obesity in animal models, and phlorotannins contained in E. cava help prevent hypertrophy-induced adipocyte differentiation. Receptor for advanced glycation end-products (RAGE) is well known to induce hypertrophy of visceral fat and to trigger inflammation substantially. While the relationship between RAGE and obesity and inflammation has been well-characterized, few studies describe the effects of phlorotannin on RAGE. In this study, we investigated the anti-obesity effects of pyrogallol-phloroglucinol-6,6-bieckol (PPB)—a single compound from the ethanoic extract of E. cava—mediated by a reduction in the inflammation caused by RAGE and RAGE ligands. In visceral fat, PPB (i) significantly inhibited RAGE ligands, (ii) reduced the expression of RAGE, and (iii) reduced the binding ratio between RAGE and RAGE ligands. Under lower expression of RAGE, RAGE ligands and their cognate binding, the differentiation of macrophages found in visceral fat into M1-type—the pro-inflammatory form of this immune cell—was reduced. As the M1-type macrophage decreased, pro-inflammatory cytokines, which cause obesity, decreased in visceral fat. The results of this study highlight the anti-obesity effects of PPB, with the effects mediated by reductions in RAGE, RAGE ligands, and inflammation

    Dieckol Attenuated Glucocorticoid-Induced Muscle Atrophy by Decreasing NLRP3 Inflammasome and Pyroptosis

    No full text
    Dexamethasone (Dexa), frequently used as an anti-inflammatory agent, paradoxically leads to muscle inflammation and muscle atrophy. Receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) lead to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome formation through nuclear factor-κB (NF-κB) upregulation. NLRP3 inflammasome results in pyroptosis and is associated with the Murf-1 and atrogin-1 upregulation involved in protein degradation and muscle atrophy. The effects of Ecklonia cava extract (ECE) and dieckol (DK) on attenuating Dexa-induced muscle atrophy were evaluated by decreasing NLRP3 inflammasome formation in the muscles of Dexa-treated animals. The binding of AGE or high mobility group protein 1 to RAGE or TLR4 was increased by Dexa but significantly decreased by ECE or DK. The downstream signaling pathways of RAGE (c-Jun N-terminal kinase or p38) were increased by Dexa but decreased by ECE or DK. NF-κB, downstream of RAGE or TLR4, was increased by Dexa but decreased by ECE or DK. The NLRP3 inflammasome component (NLRP3 and apoptosis-associated speck-like), cleaved caspase -1, and cleaved gasdermin D, markers of pyroptosis, were increased by Dexa but decreased by ECE and DK. Interleukin-1β/Murf-1/atrogin-1 expression was increased by Dexa but restored by ECE or DK. The mean muscle fiber cross-sectional area and grip strength were decreased by Dexa but restored by ECE or DK. In conclusion, ECE or DK attenuated Dexa-induced muscle atrophy by decreasing NLRP3 inflammasome formation and pyroptosis

    Co-Treatment with Phlorotannin and Extracellular Vesicles from <i>Ecklonia cava</i> Inhibits UV-Induced Melanogenesis

    No full text
    Hyperpigmentation due to ultraviolet (UV)-induced melanogenesis causes various esthetic problems. Phlorotannin (PT) and extracellular vesicles (EVs) derived from various plants suppress melanogenesis pathways. We used UV-exposed keratinocytes and animal skin to determine if co-treatment with PT and EVs from Ecklonia cava (EVE) could inhibit melanogenesis by reducing UV-induced oxidative stress and the expression of the thioredoxin-interacting protein (TXNIP)/nucleotide-binding oligomerization domain-like receptor family pyrin domain containing the 3 (NLRP3)/interleukin-18 (IL-18) pathway, which are upstream signals of the microphthalmia-associated transcription factor. UV exposure increased oxidative stress in keratinocytes and animal skin, as evaluated by 8-OHdG expression, and this effect was reduced by co-treatment with PT and EVE. UV also increased binding between NLRP3 and TXNIP, which increased NLRP3 inflammasome activation and IL-18 secretion, and this effect was reduced by co-treatment with PT and EVE in keratinocytes and animal skin. In melanocytes, conditioned media (CM) from UV-exposed keratinocytes increased the expression of melanogenesis-related pathways; however, these effects were reduced with CM from UV-exposed keratinocytes treated with PT and EVE. Similarly, PT and EVE treatment reduced melanogenesis-related signals, melanin content, and increased basement membrane (BM) components in UV-exposed animal skin. Thus, co-treatment with PT and EVE reduced melanogenesis and restored the BM structure by reducing oxidative stress and TXNIP/NLRP3/IL-18 pathway expression

    Radiofrequency Irradiation Modulates TRPV1-Related Burning Sensation in Rosacea

    No full text
    Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea
    corecore