17 research outputs found

    Selective Assembly and Guiding of Actomyosin Using Carbon Nanotube Network Monolayer Patterns

    No full text
    We report a new method for the selective assembly and guiding of actomyosin using carbon nanotube patterns. In this method, monolayer patterns of the single-walled carbon nanotube (swCNT) network were prepared via the self-limiting mechanism during the directed assembly process, and they were used to block the adsorption of both myosin and actin filaments on specific substrate regions. The swCNT network patterns were also used as an efficient barrier for the guiding experiments of actomyosin. This is the first result showing that inorganic nanostructures such as carbon nanotubes can be used to control the adsorption and activity of actomyosin. This strategy is advantageous over previous methods because it does not require complicated biomolecular linking processes and nonbiological nanostructures are usually more stable than biomolecular linkers

    Selective Assembly and Guiding of Actomyosin Using Carbon Nanotube Network Monolayer Patterns

    No full text
    We report a new method for the selective assembly and guiding of actomyosin using carbon nanotube patterns. In this method, monolayer patterns of the single-walled carbon nanotube (swCNT) network were prepared via the self-limiting mechanism during the directed assembly process, and they were used to block the adsorption of both myosin and actin filaments on specific substrate regions. The swCNT network patterns were also used as an efficient barrier for the guiding experiments of actomyosin. This is the first result showing that inorganic nanostructures such as carbon nanotubes can be used to control the adsorption and activity of actomyosin. This strategy is advantageous over previous methods because it does not require complicated biomolecular linking processes and nonbiological nanostructures are usually more stable than biomolecular linkers

    Selective Assembly and Guiding of Actomyosin Using Carbon Nanotube Network Monolayer Patterns

    No full text
    We report a new method for the selective assembly and guiding of actomyosin using carbon nanotube patterns. In this method, monolayer patterns of the single-walled carbon nanotube (swCNT) network were prepared via the self-limiting mechanism during the directed assembly process, and they were used to block the adsorption of both myosin and actin filaments on specific substrate regions. The swCNT network patterns were also used as an efficient barrier for the guiding experiments of actomyosin. This is the first result showing that inorganic nanostructures such as carbon nanotubes can be used to control the adsorption and activity of actomyosin. This strategy is advantageous over previous methods because it does not require complicated biomolecular linking processes and nonbiological nanostructures are usually more stable than biomolecular linkers

    Anisotropic Membrane Diffusion of Human Mesenchymal Stem Cells on Aligned Single-Walled Carbon Nanotube Networks

    No full text
    The diffusion of lipids and proteins in cell membranes is involved in various cellular processes such as cell adhesion and cellular signaling. We report the anisotropic molecular diffusion in the membranes of human mesenchymal stem cells on aligned single-walled carbon nanotube networks. In this study, the cells were first cultured on the surfaces of glass, graphene, and carbon nanotube networks with random or aligned orientations. Then, the molecular diffusion constants of the cell membranes were measured using a fluorescence-recovery-after-photobleaching technique. The cells on graphene exhibited a diffusion constant comparable to that on glass substrate, while those on the rough surface of randomly oriented carbon nanotube networks exhibited a rather low diffusion constant. On the aligned carbon nanotube networks, the molecules in the cell membrane were found to diffuse faster along the direction parallel to the aligned carbon nanotubes than along the direction orthogonal to the nanotubes. These results indicate that the nanoscale properties of nanostructured materials may significantly affect the molecular diffusion in cell membranes and, possibly, related cellular processes

    Selective Assembly and Alignment of Actin Filaments with Desired Polarity on Solid Substrates

    No full text
    We report a new strategy to selectively assemble and align filamentous actin (F-actin) onto desired locations on a solid substrate with a specific structural polarity. In this strategy, biotinylated gelsolin caps the structural minus end of F-actin so that the F-actin binds onto a streptavidin pattern with a specific structural polarity. We also demonstrate that an electric field can be utilized to align bound F-actin along a desired direction. This can be one of the major technical breakthroughs toward the assembly of nanomechanical systems based on myosin biomotors

    Selective Assembly and Alignment of Actin Filaments with Desired Polarity on Solid Substrates

    No full text
    We report a new strategy to selectively assemble and align filamentous actin (F-actin) onto desired locations on a solid substrate with a specific structural polarity. In this strategy, biotinylated gelsolin caps the structural minus end of F-actin so that the F-actin binds onto a streptavidin pattern with a specific structural polarity. We also demonstrate that an electric field can be utilized to align bound F-actin along a desired direction. This can be one of the major technical breakthroughs toward the assembly of nanomechanical systems based on myosin biomotors

    Graphene–Polymer Hybrid Nanostructure-Based Bioenergy Storage Device for Real-Time Control of Biological Motor Activity

    No full text
    We report a graphene–polymer hybrid nanostructure-based bioenergy storage device to turn on and off biomotor activity in real-time. In this strategy, graphene was functionalized with amine groups and utilized as a transparent electrode supporting the motility of biomotors. Conducting polymer patterns doped with adenosine triphosphate (ATP) were fabricated on the graphene and utilized for the fast release of ATP by electrical stimuli through the graphene. The controlled release of biomotor fuel, ATP, allowed us to control the actin filament transportation propelled by the biomotor in real-time. This strategy should enable the integrated nanodevices for the real-time control of biological motors, which can be a significant stepping stone toward hybrid nanomechanical systems based on motor proteins

    Graphene–Polymer Hybrid Nanostructure-Based Bioenergy Storage Device for Real-Time Control of Biological Motor Activity

    No full text
    We report a graphene–polymer hybrid nanostructure-based bioenergy storage device to turn on and off biomotor activity in real-time. In this strategy, graphene was functionalized with amine groups and utilized as a transparent electrode supporting the motility of biomotors. Conducting polymer patterns doped with adenosine triphosphate (ATP) were fabricated on the graphene and utilized for the fast release of ATP by electrical stimuli through the graphene. The controlled release of biomotor fuel, ATP, allowed us to control the actin filament transportation propelled by the biomotor in real-time. This strategy should enable the integrated nanodevices for the real-time control of biological motors, which can be a significant stepping stone toward hybrid nanomechanical systems based on motor proteins

    Graphene and Thin-Film Semiconductor Heterojunction Transistors Integrated on Wafer Scale for Low-Power Electronics

    No full text
    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene–thin-film-semiconductor–metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene–In–Ga–Zn–O (IGZO)–metal asymmetric junctions on a transparent 150 × 150 mm<sup>2</sup> glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (<i>I</i><sub>on</sub>/<i>I</i><sub>off</sub>) up to 10<sup>6</sup> with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V

    Polarization-Controlled Differentiation of Human Neural Stem Cells Using Synergistic Cues from the Patterns of Carbon Nanotube Monolayer Coating

    No full text
    We report a method for selective growth and structural-polarization-controlled neuronal differentiation of human neural stem cells (hNSCs) into neurons using carbon nanotube network patterns. The CNT patterns provide synergistic cues for the differentiation of hNSCs in physiological solution and an optimal nanotopography at the same time with good biocompatibility. We demonstrated a polarization-controlled neuronal differentiation at the level of individual NSCs. This result should provide a stable and versatile platform for controlling the hNSC growth because CNT patterns are known to be stable in time unlike commonly used organic molecular patterns
    corecore