25 research outputs found
Strain-Induced Large Exciton Energy Shifts in Buckled CdS Nanowires
Strain
engineering can be utilized to tune the fundamental properties of
semiconductor materials for applications in advanced electronic and
photonic devices. Recently, the effects of large strain on the properties
of nanostructures are being intensely investigated to further expand
our insights into the physics and applications of such materials.
In this Letter, we present results on controllable buckled cadmium-sulfide
(CdS) optical nanowires (NWs), which show extremely large energy bandgap
tuning by >250 meV with applied strains within the elastic deformation
limit. Polarization and spatially resolved optical measurements reveal
characteristics related to both compressive and tensile regimes, while
microreflectance
spectroscopy clearly demonstrates the effect of strain on the different
types of excitons in CdS. Our results may enable strained NWs-based
optoelectronic devices with tunable optical responses
Highly Stretchable and Notch-Insensitive Hydrogel Based on Polyacrylamide and Milk Protein
Protein-based
hydrogels have received attention for biomedical applications and
tissue engineering because they are biocompatible and abundant. However,
the poor mechanical properties of these hydrogels remain a hurdle
for practical use. We have developed a highly stretchable and notch-insensitive
hydrogel by integrating casein micelles into polyacrylamide (PAAm)
networks. In the casein-PAAm hybrid gels, casein micelles and polyacrylamide
chains synergistically enhance the mechanical properties. Casein-PAAm
hybrid gels are highly stretchable, stretching to more than 35 times
their initial length under uniaxial tension. The hybrid gels are notch-insensitive
and tough with a fracture energy of approximately 3000 J/m<sup>2</sup>. A new mechanism of energy dissipation that includes friction between
casein micelles and plastic deformation of casein micelles was suggested
Epitaxial Growth and Ordering of GeTe Nanowires on Microcrystals Determined by Surface Energy Minimization
We report self-assembly of highly aligned GeTe nanowires epitaxially grown on octahedral GeTe microcrystals in two well-defined directions by using one-step vapor transport process. The epitaxial relationship of nanowires with underlying microcrystals along with the growth orientations of nanowires were investigated in detail by electron microscopy combined with atomic unit cell models. We demonstrate that maximizing atomic planar density to minimize energy of the exposed surfaces is the determining factor that governs the unique growth characteristics of micro/nanostructures that evolve from three-dimensional octahedral microcrystals to tetrahedral bases to finally one-dimensional nanowires. The crystallographic understanding of structuring of crystalline nanomaterials obtained from this study will be critical to understand, predict, and control the growth orientation of nanostructures in three-dimensions
Dehydrogenation Reaction Pathway of the LiBH<sub>4</sub>–MgH<sub>2</sub> Composite under Various Pressure Conditions
This paper investigates dehydrogenation
reaction behavior of the
LiBH<sub>4</sub>–MgH<sub>2</sub> composite at 450 °C under
various hydrogen and argon back-pressure conditions. While the individual
decompositions of LiBH<sub>4</sub> and MgH<sub>2</sub> simultaneously
occur under 0.1 MPa H<sub>2</sub>, the dehydrogenation of MgH<sub>2</sub> into Mg first takes place and subsequent reaction between
LiBH<sub>4</sub> and Mg into LiH and MgB<sub>2</sub> after an incubation
period under 0.5 MPa H<sub>2</sub>. Under 1 MPa H<sub>2</sub>, enhanced
dehydrogenation kinetics for the same reaction pathway as that under
0.5 MPa H<sub>2</sub> is obtained without the incubation period. However,
the dehydrogenation reaction is significantly suppressed under 2 MPa
H<sub>2</sub>. The formation of Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> as an intermediate product during dehydrogenation seems
to be responsible for the incubation period. The degradation in hydrogen
capacity during hydrogen sorption cycles is not prevented with the
dehydrogenation under 1 MPa H<sub>2</sub>, which effectively suppresses
the formation of Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub>. The overall
dehydrogenation behavior under argon pressure conditions is similar
to that at hydrogen pressure conditions, except that under 2 MPa Ar
Robust Heteroepitaxial Growth of GaN Formulated on Porous TiN Buffer Layers
Gallium nitride (GaN) heteroepitaxial growth is widely
studied
as a semiconductor material due to its various benefits. Especially,
development of a buffer layer between GaN and the substrate verifies
to be an effective strategy to reduce high threading dislocation density.
However, the buffer layer often impedes strong adhesion between the
epilayer and foreign substrate because thermally induced residual
stress often causes delamination of the epilayer during fabrication.
Here, we developed a robust GaN heteroepitaxy employing a porous buffer
layer formulated by hydride vapor phase epitaxy. A sufficiently low
but completely coated thin Ti layer was deposited on the sapphire
substrate, which led to a rough and porous TiN layer after nitridation.
This porous structure enables the penetration of the GaN source into
the porous structure, allowing GaN epitaxy initiation throughout the
TiN layer. As a result, GaN crystal growth can fill the porous area
during the GaN heteroepitaxy. Integrated visualization demonstrated
that the voids were successfully removed by GaN infiltration, enabling
the heteroepitaxial structure to show little deformation, confirmed
by multiple indentations. Last, the void-free GaN heteroepitaxy with
the porous TiN buffer layer displayed robust adhesion after delamination
tests
Robust Heteroepitaxial Growth of GaN Formulated on Porous TiN Buffer Layers
Gallium nitride (GaN) heteroepitaxial growth is widely
studied
as a semiconductor material due to its various benefits. Especially,
development of a buffer layer between GaN and the substrate verifies
to be an effective strategy to reduce high threading dislocation density.
However, the buffer layer often impedes strong adhesion between the
epilayer and foreign substrate because thermally induced residual
stress often causes delamination of the epilayer during fabrication.
Here, we developed a robust GaN heteroepitaxy employing a porous buffer
layer formulated by hydride vapor phase epitaxy. A sufficiently low
but completely coated thin Ti layer was deposited on the sapphire
substrate, which led to a rough and porous TiN layer after nitridation.
This porous structure enables the penetration of the GaN source into
the porous structure, allowing GaN epitaxy initiation throughout the
TiN layer. As a result, GaN crystal growth can fill the porous area
during the GaN heteroepitaxy. Integrated visualization demonstrated
that the voids were successfully removed by GaN infiltration, enabling
the heteroepitaxial structure to show little deformation, confirmed
by multiple indentations. Last, the void-free GaN heteroepitaxy with
the porous TiN buffer layer displayed robust adhesion after delamination
tests
Robust Heteroepitaxial Growth of GaN Formulated on Porous TiN Buffer Layers
Gallium nitride (GaN) heteroepitaxial growth is widely
studied
as a semiconductor material due to its various benefits. Especially,
development of a buffer layer between GaN and the substrate verifies
to be an effective strategy to reduce high threading dislocation density.
However, the buffer layer often impedes strong adhesion between the
epilayer and foreign substrate because thermally induced residual
stress often causes delamination of the epilayer during fabrication.
Here, we developed a robust GaN heteroepitaxy employing a porous buffer
layer formulated by hydride vapor phase epitaxy. A sufficiently low
but completely coated thin Ti layer was deposited on the sapphire
substrate, which led to a rough and porous TiN layer after nitridation.
This porous structure enables the penetration of the GaN source into
the porous structure, allowing GaN epitaxy initiation throughout the
TiN layer. As a result, GaN crystal growth can fill the porous area
during the GaN heteroepitaxy. Integrated visualization demonstrated
that the voids were successfully removed by GaN infiltration, enabling
the heteroepitaxial structure to show little deformation, confirmed
by multiple indentations. Last, the void-free GaN heteroepitaxy with
the porous TiN buffer layer displayed robust adhesion after delamination
tests
Robust Heteroepitaxial Growth of GaN Formulated on Porous TiN Buffer Layers
Gallium nitride (GaN) heteroepitaxial growth is widely
studied
as a semiconductor material due to its various benefits. Especially,
development of a buffer layer between GaN and the substrate verifies
to be an effective strategy to reduce high threading dislocation density.
However, the buffer layer often impedes strong adhesion between the
epilayer and foreign substrate because thermally induced residual
stress often causes delamination of the epilayer during fabrication.
Here, we developed a robust GaN heteroepitaxy employing a porous buffer
layer formulated by hydride vapor phase epitaxy. A sufficiently low
but completely coated thin Ti layer was deposited on the sapphire
substrate, which led to a rough and porous TiN layer after nitridation.
This porous structure enables the penetration of the GaN source into
the porous structure, allowing GaN epitaxy initiation throughout the
TiN layer. As a result, GaN crystal growth can fill the porous area
during the GaN heteroepitaxy. Integrated visualization demonstrated
that the voids were successfully removed by GaN infiltration, enabling
the heteroepitaxial structure to show little deformation, confirmed
by multiple indentations. Last, the void-free GaN heteroepitaxy with
the porous TiN buffer layer displayed robust adhesion after delamination
tests
Direct Growth of Compound Semiconductor Nanowires by On-Film Formation of Nanowires: Bismuth Telluride
Bismuth telluride (Bi2Te3) nanowires are of great interest as nanoscale building blocks for high-efficiency thermoelectric devices. Their low-dimensional character leads to an enhanced figure-of-merit (ZT), an indicator of thermoelectric efficiency. Herein, we report the invention of a direct growth method termed On-Film Formation of Nanowires (OFF-ON) for making high-quality single-crystal compound semiconductor nanowires, that is, Bi2Te3, without the use of conventional templates, catalysts, or starting materials. We have used the OFF-ON technique to grow single crystal compound semiconductor Bi2Te3 nanowires from sputtered BiTe films after thermal annealing at 350 °C. The mechanism for wire growth is stress-induced mass flow along grain boundaries in the polycrystalline film. OFF-ON is a simple but powerful method for growing perfect single-crystal compound semiconductor nanowires of high aspect ratio with high crystallinity that distinguishes it from other competitive growth approaches that have been developed to date
