89 research outputs found

    Non-uniform Feature Sampling for Decision Tree Ensembles

    Full text link
    We study the effectiveness of non-uniform randomized feature selection in decision tree classification. We experimentally evaluate two feature selection methodologies, based on information extracted from the provided dataset: (i)(i) \emph{leverage scores-based} and (ii)(ii) \emph{norm-based} feature selection. Experimental evaluation of the proposed feature selection techniques indicate that such approaches might be more effective compared to naive uniform feature selection and moreover having comparable performance to the random forest algorithm [3]Comment: 7 pages, 7 figures, 1 tabl

    Approximate Matrix Multiplication with Application to Linear Embeddings

    Full text link
    In this paper, we study the problem of approximately computing the product of two real matrices. In particular, we analyze a dimensionality-reduction-based approximation algorithm due to Sarlos [1], introducing the notion of nuclear rank as the ratio of the nuclear norm over the spectral norm. The presented bound has improved dependence with respect to the approximation error (as compared to previous approaches), whereas the subspace -- on which we project the input matrices -- has dimensions proportional to the maximum of their nuclear rank and it is independent of the input dimensions. In addition, we provide an application of this result to linear low-dimensional embeddings. Namely, we show that any Euclidean point-set with bounded nuclear rank is amenable to projection onto number of dimensions that is independent of the input dimensionality, while achieving additive error guarantees.Comment: 8 pages, International Symposium on Information Theor

    Fixed-rank Rayleigh Quotient Maximization by an MMPSK Sequence

    Full text link
    Certain optimization problems in communication systems, such as limited-feedback constant-envelope beamforming or noncoherent MM-ary phase-shift keying (MMPSK) sequence detection, result in the maximization of a fixed-rank positive semidefinite quadratic form over the MMPSK alphabet. This form is a special case of the Rayleigh quotient of a matrix and, in general, its maximization by an MMPSK sequence is NP\mathcal{NP}-hard. However, if the rank of the matrix is not a function of its size, then the optimal solution can be computed with polynomial complexity in the matrix size. In this work, we develop a new technique to efficiently solve this problem by utilizing auxiliary continuous-valued angles and partitioning the resulting continuous space of solutions into a polynomial-size set of regions, each of which corresponds to a distinct MMPSK sequence. The sequence that maximizes the Rayleigh quotient is shown to belong to this polynomial-size set of sequences, thus efficiently reducing the size of the feasible set from exponential to polynomial. Based on this analysis, we also develop an algorithm that constructs this set in polynomial time and show that it is fully parallelizable, memory efficient, and rank scalable. The proposed algorithm compares favorably with other solvers for this problem that have appeared recently in the literature.Comment: 15 pages, 12 figures, To appear in IEEE Transactions on Communication

    Randomized Low-Memory Singular Value Projection

    Get PDF
    Affine rank minimization algorithms typically rely on calculating the gradient of a data error followed by a singular value decomposition at every iteration. Because these two steps are expensive, heuristic approximations are often used to reduce computational burden. To this end, we propose a recovery scheme that merges the two steps with randomized approximations, and as a result, operates on space proportional to the degrees of freedom in the problem. We theoretically establish the estimation guarantees of the algorithm as a function of approximation tolerance. While the theoretical approximation requirements are overly pessimistic, we demonstrate that in practice the algorithm performs well on the quantum tomography recovery problem.Comment: 13 pages. This version has a revised theorem and new numerical experiment

    On Quantifying Qualitative Geospatial Data: A Probabilistic Approach

    Full text link
    Living in the era of data deluge, we have witnessed a web content explosion, largely due to the massive availability of User-Generated Content (UGC). In this work, we specifically consider the problem of geospatial information extraction and representation, where one can exploit diverse sources of information (such as image and audio data, text data, etc), going beyond traditional volunteered geographic information. Our ambition is to include available narrative information in an effort to better explain geospatial relationships: with spatial reasoning being a basic form of human cognition, narratives expressing such experiences typically contain qualitative spatial data, i.e., spatial objects and spatial relationships. To this end, we formulate a quantitative approach for the representation of qualitative spatial relations extracted from UGC in the form of texts. The proposed method quantifies such relations based on multiple text observations. Such observations provide distance and orientation features which are utilized by a greedy Expectation Maximization-based (EM) algorithm to infer a probability distribution over predefined spatial relationships; the latter represent the quantified relationships under user-defined probabilistic assumptions. We evaluate the applicability and quality of the proposed approach using real UGC data originating from an actual travel blog text corpus. To verify the quality of the result, we generate grid-based maps visualizing the spatial extent of the various relations
    corecore