2 research outputs found
Functional and genomic characterisation of a xenograft model system for the study of metastasis in triple-negative breast cancer
Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes. Hence, new molecular targets for therapeutic intervention are necessary. Analyses of panels of human or mouse cancer lines derived from the same individual that differ in their cellular phenotypes but not in genetic background have been instrumental in defining the molecular players that drive the various hallmarks of cancer. To determine the molecular regulators of metastasis in TNBC, we completed a rigorous in vitro and in vivo characterisation of four populations of the MDA-MB-231 human breast cancer line ranging in aggressiveness from non-metastatic to spontaneously metastatic to lung, liver, spleen and lymph node. Single nucleotide polymorphism (SNP) array analyses and genome-wide mRNA expression profiles of tumour cells isolated from orthotopic mammary xenografts were compared between the four lines to define both cell autonomous pathways and genes associated with metastatic proclivity. Gene set enrichment analysis (GSEA) demonstrated an unexpected association between both ribosome biogenesis and mRNA metabolism and metastatic capacity. Differentially expressed genes or families of related genes were allocated to one of four categories, associated with either metastatic initiation (e.g. CTSC, ENG, BMP2), metastatic virulence (e.g. ADAMTS1, TIE1), metastatic suppression (e.g. CST1, CST2, CST4, CST6, SCNNA1, BMP4) or metastatic avirulence (e.g. CD74). Collectively, this model system based on MDA-MB-231 cells should be useful for the assessment of gene function in the metastatic cascade and also for the testing of novel experimental therapeutics for the treatment of TNBC
LRH-1 expression patterns in breast cancer tissues are associated with tumour aggressiveness
The significance and regulation of liver receptor homologue 1 (LRH-1, NR5A2), a tumour-promoting transcription factor in breast cancer cell lines, is unknown in clinical breast cancers. This study aims to determine LRH-1/NR5A2 expression in breast cancers and relationship with DNA methylation and tumour characteristics. In The Cancer Genome Atlas breast cancer cohort NR5A2 expression was positively associated with intragenic CpG island methylation (1.4-fold expression for fully methylated versus not fully methylated, p=0.01) and inversely associated with promoter CpG island methylation (0.6-fold expression for fully methylated versus not fully methylated, p=0.036). LRH-1 immunohistochemistry of 329 invasive carcinomas and ductal carcinoma in situ (DCIS) was performed. Densely punctate/ coarsely granular nuclear reactivity was significantly associated with high tumour grade (p < 0.005, p=0.033 in invasive carcinomas and DCIS respectively), negative estrogen receptor status (p=0.008, p=0.038 in overall cohort and invasive carcinomas, respectively), negative progesterone receptor status (p=0.003, p=0.013 in overall cohort and invasive carcinomas, respectively), HER2 amplification (overall cohort p=0.034) and non-luminal intrinsic subtype (p=0.018, p=0.038 in overall cohort and invasive carcinomas, respectively). These significant associations of LRH-1 protein expression with tumour phenotype suggest that LRH-1 is an important indicator of tumour biology in breast cancers and may be useful in risk stratification
