2,686 research outputs found

### Dynamics of an Acoustic Polaron in One-Dimensional Electron-Lattice System

The dynamical behavior of an acoustic polaron in typical non-degenerate
conjugated polymer, polydiacetylene, is numerically studied by using
Su-Schrieffer-Heeger's model for the one dimensional electron-lattice system.
It is confirmed that the velocity of a polaron accelerated by a constant
electric field shows a saturation to a velocity close to the sound velocity of
the system, and that the width of a moving polaron decreases as a monotonic
function of the velocity tending to zero at the saturation velocity. The
effective mass of a polaron is estimated to be about one hundred times as heavy
as the bare electron mass. Furthermore the linear mode analysis in the presence
of a polaron is carried out, leading to the conclusion that there is only one
localized mode, i.e. the translational mode. This is confirmed also from the
phase shift of extended modes. There is no localized mode corresponding to the
amplitude mode in the case of the soliton in polyacetylene. Nevertheless the
width of a moving polaron shows small oscillations in time. This is found to be
related to the lowest odd symmetry extended mode and to be due to the finite
size effect.Comment: 12 pages, latex, 9 figures (postscript figures abailble on request to
[email protected]) to be published in J. Phys. Soc. Jpn. vol.65
(1996) No.

### Semi-Phenomenological Analysis of Dynamics of Nonlinear Excitations in One-Dimensional Electron-Phonon System

The structure of moving nonlinear excitations in one-dimensional
electron-phonon systems is studied semi-phenomenologically by using an
effective action in which the width of the nonlinear excitation is treated as a
dynamical variable. The effective action can be derived from Su, Schrieffer and
Heeger's model or its continuum version proposed by Takayama, Lin-Liu and Maki
with an assumption that the nonlinear excitation moves uniformly without any
deformation except the change of its width. The form of the action is
essentially the same as that discussed by Bishop and coworkers in studying the
dynamics of the soliton in polyacetylene, though some details are different.
For the moving excitation with a velocity $v$, the width is determined by
minimizing the effective action. A requirement that there must be a minimum in
the action as a function of its width provides a maximum velocity. The velocity
dependence of the width and energy can be determined. The motions of a soliton
in p olyacetylene and an acoustic polaron in polydiacetylene are studied within
this formulation. The obtained results are in good agreement with those of
numerical simulations.Comment: 19 pages, LaTeX, 7 Postscript figures, to be published in J. Phys.
Soc. Jpn. vol.65 (1996) No.

### The impact of two-dimensional elastic disk

The impact of a two-dimensional elastic disk with a wall is numerically
studied. It is clarified that the coefficient of restitution (COR) decreases
with the impact velocity. The result is not consistent with the recent
quasi-static theory of inelastic collisions even for very slow impact. The
abrupt drop of COR is found due to the plastic deformation of the disk, which
is assisted by the initial internal motion.(to be published in J. Phys. Soc.
Jpn.)Comment: 6 Pages,2 figure

### The anomalous behavior of coefficient of normal restitution in the oblique impact

The coefficient of normal restitution in an oblique impact is theoretically
studied. Using a two-dimensional lattice models for an elastic disk and an
elastic wall, we demonstrate that the coefficient of normal restitution can
exceed one and has a peak against the incident angle in our simulation.
Finally, we explain these phenomena based upon the phenomenological theory of
elasticity.Comment: 4 pages, 4 figures, to be appeared in PR

### How Hertzian solitary waves interact with boundaries in a 1-D granular medium

We perform measurements, numerical simulations, and quantitative comparisons
with available theory on solitary wave propagation in a linear chain of beads
without static preconstrain. By designing a nonintrusive force sensor to
measure the impulse as it propagates along the chain, we study the solitary
wave reflection at a wall. We show that the main features of solitary wave
reflection depend on wall mechanical properties. Since previous studies on
solitary waves have been performed at walls without these considerations, our
experiment provides a more reliable tool to characterize solitary wave
propagation. We find, for the first time, precise quantitative agreements.Comment: Proof corrections, ReVTeX, 11 pages, 3 eps (Focus and related papers
on http://www.supmeca.fr/perso/jobs/

### Local atomic structure and discommensurations in the charge density wave of CeTe3

The local structure of CeTe3 in the incommensurate charge density wave
(IC-CDW) state has been obtained using atomic pair distribution function (PDF)
analysis of x-ray diffraction data. Local atomic distortions in the Te-nets due
to the CDW are larger than observed crystallographically, resulting in distinct
short and long Te-Te bonds. Observation of different distortion amplitudes in
the local and average structures are explained by the discommensurated nature
of the CDW since the PDF is sensitive to the local displacements within the
commensurate regions whereas the crystallographic result averages over many
discommensurated domains. The result is supported by STM data. This is the
first quantitative local structural study within the commensurate domains in an
IC-CDW system.Comment: 4 pages, 4 figure

### Collision of One-Dimensional Nonlinear Chains

We investigate one-dimensional collisions of unharmonic chains and a rigid
wall. We find that the coefficient of restitution (COR) is strongly dependent
on the velocity of colliding chains and has a minimum value at a certain
velocity. The relationship between COR and collision velocity is derived for
low-velocity collisions using perturbation methods. We found that the velocity
dependence is characterized by the exponent of the lowest unharmonic term of
interparticle potential energy

### Scaling properties of granular materials

Given an assembly of viscoelastic spheres with certain material properties,
we raise the question how the macroscopic properties of the assembly will
change if all lengths of the system, i.e. radii, container size etc., are
scaled by a constant. The result leads to a method to scale down experiments to
lab-size.Comment: 4 pages, 2 figure

- …