173 research outputs found

    Direct Measurement of Thermal Fluctuation of High-Q Pendulum

    Full text link
    We achieved for the first time a direct measurement of the thermal fluctuation of a pendulum in an off-resonant region using a laser interferometric gravitational wave detector. These measurements have been well identified for over one decade by an agreement with a theoretical prediction, which was derived by a fluctuation-dissipation theorem. Thermal fluctuation is dominated by the contribution of resistances in coil-magnet actuator circuits. When we tuned these resistances, the noise spectrum also changed according to a theoretical prediction. The measured thermal noise level corresponds to a high quality factor on the order of 10^5 of the pendulum.Comment: 10 pages, 4 figure

    Photon correlation in GaAs self-assembled quantum dots

    Full text link
    We report on photon coincidence measurement in a single GaAs self-assembled quantum dot (QD) using a pulsed excitation light source. At low excitation, when a neutral exciton line was present in the photoluminescence (PL) spectrum, we observed nearly perfect single photon emission from an isolated QD at 670 nm wavelength. For higher excitation, multiple PL lines appeared on the spectra, reflecting the formation of exciton complexes. Cross-correlation functions between these lines showed either bunching or antibunching behavior, depending on whether the relevant emission was from a biexciton cascade or a charged exciton recombination.Comment: 5 pages, 3 figure

    Cryogenic measurement of the optical absorption coefficient in sapphire crystals at 1.064(micro)m for the Large-scale Cryogenic Gravitational wave Telescope

    Get PDF
    We have applied laser calorimetry to the measurement of optical absorption in mono-crystalline sapphire at cryogenic temperatures. Sapphire is a promising candidate for the mirror substrates of the Large-scale Cryogenic Gravitational wave Telescope. The optical absorption coefficients of different sapphire samples at a wavelength of 1.064(micro)m at 5K were found to average 90ppm/cm.Comment: 8 pages, accepted to Phys. Lett.

    Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy

    Full text link
    We report optical orientation experiments in individual, strain free GaAs quantum dots in AlGaAs grown by droplet epitaxy. Circularly polarized optical excitation yields strong circular polarization of the resulting photoluminescence at 4K. Optical injection of spin polarized electrons into a dot gives rise to dynamical nuclear polarization that considerably changes the exciton Zeeman splitting (Overhauser shift). We show that the created nuclear polarization is bistable and present a direct measurement of the build-up time of the nuclear polarization in a single GaAs dot in the order of one second.Comment: 7 pages, 3 figure

    Conduction Effect of Thermal Radiation in a Metal Shield Pipe in a Cryostat for a Cryogenic Interferometric Gravitational Wave Detector

    Full text link
    A large heat load caused by thermal radiation through a metal shield pipe was observed in a cooling test of a cryostat for a prototype of a cryogenic interferometric gravitational wave detector. The heat load was approximately 1000 times larger than the value calculated by the Stefan-Boltzmann law. We studied this phenomenon by simulation and experiment and found that it was caused by the conduction of thermal radiation in a metal shield pipe.Comment: 7 pages, 4 figures, 2 tables, Submitted to Jpn. J. Appl. Phy

    Thermal-noise-limited underground interferometer CLIO

    Full text link
    We report on the current status of CLIO (Cryogenic Laser Interferometer Observatory), which is a prototype interferometer for LCGT (Large Scale Cryogenic Gravitational-Wave Telescope). LCGT is a Japanese next-generation interferometric gravitational wave detector featuring the use of cryogenic mirrors and a quiet underground site. The main purpose of CLIO is to demonstrate a reduction of the mirror thermal noise by cooling the sapphire mirrors. CLIO is located in an underground site of the Kamioka mine, 1000 m deep from the mountain top, to verify its advantages. After a few years of commissioning work, we have achieved a thermal-noise-limited sensitivity at room temperature. One of the main results of noise hunting was the elimination of thermal noise caused by a conductive coil-holder coupled with a pendulum through magnets.Comment: 10 pages, 6 figures, Proceedings of the 8th Edoardo Amaldi Conference on Gravitational Wave
    • …
    corecore