11 research outputs found

    Guiding CTC Posterior Spike Timings for Improved Posterior Fusion and Knowledge Distillation

    Full text link
    Conventional automatic speech recognition (ASR) systems trained from frame-level alignments can easily leverage posterior fusion to improve ASR accuracy and build a better single model with knowledge distillation. End-to-end ASR systems trained using the Connectionist Temporal Classification (CTC) loss do not require frame-level alignment and hence simplify model training. However, sparse and arbitrary posterior spike timings from CTC models pose a new set of challenges in posterior fusion from multiple models and knowledge distillation between CTC models. We propose a method to train a CTC model so that its spike timings are guided to align with those of a pre-trained guiding CTC model. As a result, all models that share the same guiding model have aligned spike timings. We show the advantage of our method in various scenarios including posterior fusion of CTC models and knowledge distillation between CTC models with different architectures. With the 300-hour Switchboard training data, the single word CTC model distilled from multiple models improved the word error rates to 13.7%/23.1% from 14.9%/24.1% on the Hub5 2000 Switchboard/CallHome test sets without using any data augmentation, language model, or complex decoder.Comment: Accepted to Interspeech 201

    Multiple Representation Transfer from Large Language Models to End-to-End ASR Systems

    Full text link
    Transferring the knowledge of large language models (LLMs) is a promising technique to incorporate linguistic knowledge into end-to-end automatic speech recognition (ASR) systems. However, existing works only transfer a single representation of LLM (e.g. the last layer of pretrained BERT), while the representation of a text is inherently non-unique and can be obtained variously from different layers, contexts and models. In this work, we explore a wide range of techniques to obtain and transfer multiple representations of LLMs into a transducer-based ASR system. While being conceptually simple, we show that transferring multiple representations of LLMs can be an effective alternative to transferring only a single representation.Comment: Submitted to ICASSP 202

    English Broadcast News Speech Recognition by Humans and Machines

    Full text link
    With recent advances in deep learning, considerable attention has been given to achieving automatic speech recognition performance close to human performance on tasks like conversational telephone speech (CTS) recognition. In this paper we evaluate the usefulness of these proposed techniques on broadcast news (BN), a similar challenging task. We also perform a set of recognition measurements to understand how close the achieved automatic speech recognition results are to human performance on this task. On two publicly available BN test sets, DEV04F and RT04, our speech recognition system using LSTM and residual network based acoustic models with a combination of n-gram and neural network language models performs at 6.5% and 5.9% word error rate. By achieving new performance milestones on these test sets, our experiments show that techniques developed on other related tasks, like CTS, can be transferred to achieve similar performance. In contrast, the best measured human recognition performance on these test sets is much lower, at 3.6% and 2.8% respectively, indicating that there is still room for new techniques and improvements in this space, to reach human performance levels.Comment: \copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    English Conversational Telephone Speech Recognition by Humans and Machines

    Full text link
    One of the most difficult speech recognition tasks is accurate recognition of human to human communication. Advances in deep learning over the last few years have produced major speech recognition improvements on the representative Switchboard conversational corpus. Word error rates that just a few years ago were 14% have dropped to 8.0%, then 6.6% and most recently 5.8%, and are now believed to be within striking range of human performance. This then raises two issues - what IS human performance, and how far down can we still drive speech recognition error rates? A recent paper by Microsoft suggests that we have already achieved human performance. In trying to verify this statement, we performed an independent set of human performance measurements on two conversational tasks and found that human performance may be considerably better than what was earlier reported, giving the community a significantly harder goal to achieve. We also report on our own efforts in this area, presenting a set of acoustic and language modeling techniques that lowered the word error rate of our own English conversational telephone LVCSR system to the level of 5.5%/10.3% on the Switchboard/CallHome subsets of the Hub5 2000 evaluation, which - at least at the writing of this paper - is a new performance milestone (albeit not at what we measure to be human performance!). On the acoustic side, we use a score fusion of three models: one LSTM with multiple feature inputs, a second LSTM trained with speaker-adversarial multi-task learning and a third residual net (ResNet) with 25 convolutional layers and time-dilated convolutions. On the language modeling side, we use word and character LSTMs and convolutional WaveNet-style language models
    corecore