5 research outputs found

    Wind-accreting Symbiotic X-ray Binaries

    Full text link
    We present a new model of the population of symbiotic X-ray binaries (SyXBs) that takes into account non-stationary character of quasi-spherical sub-sonic accretion of the red giant's stellar wind onto slowly rotating neutron stars. Updates of the earlier models are given, which include more strict criteria of slow NS rotation for plasma entry into the NS magnetosphere via Rayleigh-Taylor instability, as well as more strict conditions for settling accretion for slow stellar winds, with an account of variations in the specific angular momentum of captured stellar wind in eccentric binaries. These modifications enabled a more adequate description of the distributions of observed systems over binary orbital periods, NS spin periods and their X-ray luminosity in the 10321036\sim 10^{32}-10^{36}~erg s1^{-1} range and brought their model Galactic number into reasonable agreement with the observed one. Reconciliation of the model and observed orbital periods of SyXBs requires a low efficiency of matter expulsion from common envelopes during the evolution that results in the formation of NS-components of symbiotic X-ray systems.Comment: 11 pages, 4 figures, accepted in MNRA

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro- ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few stud-ies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro-ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young

    The effect of climate change on avian offspring production:a global meta-analysis

    No full text
    Abstract Climate change affects timing of reproduction in many bird species, but few stud-ies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro-ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young
    corecore