7,138 research outputs found

    Long range spatial correlation between two Brownian particles under external driving

    Full text link
    We study the large distance behavior of a steady distribution of two Brownian particles under external driving in a two-dimensional space. Employing a method of perturbative system reduction, we analyze a Fokker-Planck equation that describes the time evolution of the probability density for the two particles. The expression we obtain shows that there exist a long range correlation between the two particles, of 1/r21/r^2 type.Comment: 11 page

    Birhythmicity, Synchronization, and Turbulence in an Oscillatory System with Nonlocal Inertial Coupling

    Get PDF
    We consider a model where a population of diffusively coupled limit-cycle oscillators, described by the complex Ginzburg-Landau equation, interacts nonlocally via an inertial field. For sufficiently high intensity of nonlocal inertial coupling, the system exhibits birhythmicity with two oscillation modes at largely different frequencies. Stability of uniform oscillations in the birhythmic region is analyzed by means of the phase dynamics approximation. Numerical simulations show that, depending on its parameters, the system has irregular intermittent regimes with local bursts of synchronization or desynchronization.Comment: 21 pages, many figures. Paper accepted on Physica

    Many-Body Theory of Synchronization by Long-Range Interactions

    Full text link
    Synchronization of coupled oscillators on a dd-dimensional lattice with the power-law coupling G(r)=g0/rαG(r) = g_0/r^\alpha and randomly distributed intrinsic frequency is analyzed. A systematic perturbation theory is developed to calculate the order parameter profile and correlation functions in powers of ϵ=α/d1\epsilon = \alpha/d-1. For αd\alpha \le d, the system exhibits a sharp synchronization transition as described by the conventional mean-field theory. For α>d\alpha > d, the transition is smeared by the quenched disorder, and the macroscopic order parameter \Av\psi decays slowly with g0g_0 as |\Av\psi| \propto g_0^2.Comment: 4 pages, 2 figure

    Perturbative renormalization of multi-channel Kondo-type models

    Full text link
    The poor man's scaling is extended to higher order by the use of the open-shell Rayleigh-Schroedinger perturbation theory. A generalized Kondo-type model with the SU(n) times SU(m) symmetry is proposed and renormalized to the third order. It is shown that the model has both local Fermi-liquid and non-Fermi-liquid fixed points, and that the latter becomes unstable in the special case of n=m=2. Possible relevance of the model to the newly found phase IV in Ce_{x}La_{1-x}B_6 is discussed.Comment: 14 pages, 10 Postscript figure

    Critical exponents of Nikolaevskii turbulence

    Get PDF
    We study the spatial power spectra of Nikolaevskii turbulence in one-dimensional space. First, we show that the energy distribution in wavenumber space is extensive in nature. Then, we demonstrate that, when varying a particular parameter, the spectrum becomes qualitatively indistinguishable from that of Kuramoto-Sivashinsky turbulence. Next, we derive the critical exponents of turbulent fluctuations. Finally, we argue that in some previous studies, parameter values for which this type of turbulence does not appear were mistakenly considered, and we resolve inconsistencies obtained in previous studies.Comment: 9 pages, 6 figure

    Diffusion-induced instability and chaos in random oscillator networks

    Full text link
    We demonstrate that diffusively coupled limit-cycle oscillators on random networks can exhibit various complex dynamical patterns. Reducing the system to a network analog of the complex Ginzburg-Landau equation, we argue that uniform oscillations can be linearly unstable with respect to spontaneous phase modulations due to diffusional coupling - the effect corresponding to the Benjamin-Feir instability in continuous media. Numerical investigations under this instability in random scale-free networks reveal a wealth of complex dynamical regimes, including partial amplitude death, clustering, and chaos. A dynamic mean-field theory explaining different kinds of nonlinear dynamics is constructed.Comment: 6 pages, 3 figure

    Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    Full text link
    We study a triangular network of three populations of coupled phase oscillators with identical frequencies. The populations interact nonlocally, in the sense that all oscillators are coupled to one another, but more weakly to those in neighboring populations than to those in their own population. This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits \emph{two coexisting stable chimeras}. Both chimeras are, as usual, born through a saddle node bifurcation. As the coupling becomes increasingly local in nature they lose stability through a Hopf bifurcation, giving rise to breathing chimeras, which in turn get destroyed through a homoclinic bifurcation. Remarkably, one of the chimeras reemerges by a reversal of this scenario as we further increase the locality of the coupling, until it is annihilated through another saddle node bifurcation.Comment: 12 pages, 5 figure

    Chimera and globally clustered chimera: Impact of time delay

    Get PDF
    Following a short report of our preliminary results [Phys. Rev. E 79, 055203(R) (2009)], we present a more detailed study of the effects of coupling delay in diffusively coupled phase oscillator populations. We find that coupling delay induces chimera and globally clustered chimera (GCC) states in delay coupled populations. We show the existence of multi-clustered states that act as link between the chimera and the GCC states. A stable GCC state goes through a variety of GCC states, namely periodic, aperiodic, long-- and short--period breathers and becomes unstable GCC leading to global synchronization in the system, on increasing time delay. We provide numerical evidence and theoretical explanations for the above results and discuss possible applications of the observed phenomena.Comment: 10 pages, 10 figures, Accepted in Phys. Rev.

    Chimeras in networks of planar oscillators

    Full text link
    Chimera states occur in networks of coupled oscillators, and are characterized by having some fraction of the oscillators perfectly synchronized, while the remainder are desynchronized. Most chimera states have been observed in networks of phase oscillators with coupling via a sinusoidal function of phase differences, and it is only for such networks that any analysis has been performed. Here we present the first analysis of chimera states in a network of planar oscillators, each of which is described by both an amplitude and a phase. We find that as the attractivity of the underlying periodic orbit is reduced chimeras are destroyed in saddle-node bifurcations, and supercritical Hopf and homoclinic bifurcations of chimeras also occur.Comment: To appear, Phys. Rev.
    corecore