4,031 research outputs found
UVES and X-Shooter spectroscopy of the emission line AM CVn systems GP Com and V396 Hya
We present time-resolved spectroscopy of the AM CVn-type binaries GP Com and
V396 Hya obtained with VLT/X-Shooter and VLT/UVES. We fully resolve the narrow
central components of the dominant helium lines and determine radial velocity
semi-amplitudes of km s for GP Com and
km s for V396 Hya. The mean velocities of
the narrow central components show variations from line to line. Compared to
calculated line profiles that include Stark broadening we are able to explain
the displacements, and the appearance of forbidden helium lines, by additional
Stark broadening of emission in a helium plasma with an electron density
cm. More than nitrogen and more than
neon lines emission lines were detected in both systems. Additionally,
nitrogen absorption lines are only seen in GP Com. The radial velocity
variations of these lines show the same phase and velocity amplitude as the
central helium emission components. The small semi-amplitude of the central
helium emission component, the consistency of phase and amplitude with the
absorption components in GP Com as well as the measured Stark effect shows that
the central helium emission component, the so-called central-spike, is
consistent with an origin on the accreting white dwarf. We use the dynamics of
the bright spot and the central spike to constrain the binary parameters for
both systems and find a donor mass of - M for GP
Com and - M for V396 Hya. We find an upper limit
for the rotational velocity of the accretor of km s for
GP Com and km s for V396 Hya which excludes a fast
rotating accretor in both systems.Comment: Accepted for publication in MNRAS, 15 pages, 14 figures, 5 table
Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914
We searched for an optical counterpart to the first gravitational-wave source discovered by LIGO (GW150914), using a combination of the Pan-STARRS1 wide-field telescope and the Public ESO Spectroscopic Survey of Transient Objects (PESSTO) spectroscopic follow-up programme. As the final LIGO sky maps changed during analysis, the total probability of the source being spatially coincident with our fields was finally only 4.2 per cent. Therefore, we discuss our results primarily as a demonstration of the survey capability of Pan-STARRS and spectroscopic capability of PESSTO. We mapped out 442 deg^2 of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 d from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae (SNe) and AGN variability and none is obviously linked with GW150914. We illustrate the sensitivity of our survey by defining parametrized light curves with time-scales of 4, 20 and 40 d and use the sensitivity of the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magnitudes of i_(P1) = 19.2, 20.0 and 20.8, respectively, for the three time-scales. For long time-scale parametrized light curves (with full width half-maximum ≃40 d), we set upper limits of M_i ≤ −17.2^(−0.9)_(+1.4) if the distance to GW150914 is D_L = 400 ± 200 Mpc. The number of Type Ia SN we find in the survey is similar to that expected from the cosmic SN rate, indicating a reasonably complete efficiency in recovering SN like transients out to D_L = 400 ± 200 Mpc
Quantitative spectroscopy of extreme helium stars - Model atmospheres and a non-LTE abundance analysis of BD+102179?
Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of
spectral type A and B. They are believed to result from mergers in double
degenerate systems. In this paper we present a detailed quantitative non-LTE
spectral analysis for BD+102179, a prototype of this rare class of
stars, using UVES and FEROS spectra covering the range from 3100 to 10
000 {\AA}. Atmosphere model computations were improved in two ways. First,
since the UV metal line blanketing has a strong impact on the
temperature-density stratification, we used the Atlas12 code. Additionally, We
tested Atlas12 against the benchmark code Sterne3, and found only small
differences in the temperature and density stratifications, and good agreement
with the spectral energy distributions. Second, 12 chemical species were
treated in non-LTE. Pronounced non-LTE effects occur in individual spectral
lines but, for the majority, the effects are moderate to small. The
spectroscopic parameters give = 17 300300 K and
= 2.800.10, and an evolutionary mass of 0.550.05 . The star
is thus slightly hotter, more compact and less massive than found in previous
studies. The kinematic properties imply a thick-disk membership, which is
consistent with the metallicity Fe/H and -enhancement.
The refined light-element abundances are consistent with the white dwarf merger
scenario. We further discuss the observed helium spectrum in an appendix,
detecting dipole-allowed transitions from about 150 multiplets plus the most
comprehensive set of known/predicted isolated forbidden components to date.
Moreover, a so far unreported series of pronounced forbidden He I components is
detected in the optical-UV.Comment: Accepted for publication in MNRAS, 26 pages, 19 Figure
Hot subdwarf stars and their connection to thermonuclear supernovae
Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very
thin hydrogen envelopes, which can be formed by common envelope ejection. Close
sdB binaries with massive white dwarf (WD) companions are potential progenitors
of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor
candidate as well as a candidate for a surviving companion star, which escapes
from the Galaxy. More candidates for both types of objects have been found by
crossmatching known sdB stars with proper motion and light curve catalogues.
The Gaia mission will provide accurate astrometry and light curves of all the
stars in our hot subdwarf sample and will allow us to compile a much larger
all-sky catalogue of those stars. In this way we expect to find hundreds of
progenitor binaries and ejected companions.Comment: Proceedings of the 11th Pacific Rim Conference on Stellar
Astrophysics, Hong Kong 2015, Journal of Physics: Conference Series, in pres
Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions
Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)The origin of hot subdwarf B stars (sdBs) is still unclear. About half of the known sdBs are in close binary systems for which common envelope ejection is the most likely formation channel. Little is known about this dynamic phase of binary evolution. Since most of the known sdB systems are single-lined spectroscopic binaries, it is difficult to derive masses and unravel the companions' nature, which is the aim of this paper. Due to the tidal influence of the companion in close binary systems, the rotation of the primary becomes synchronised to its orbital motion. In this case it is possible to constrain the mass of the companion, if the primary mass, its projected rotational velocity as well as its surface gravity are known. For the first time we measured the projected rotational velocities of a large sdB binary sample from high resolution spectra. We analysed a sample of 51 sdB stars in close binaries, 40 of which have known orbital parameters comprising half of all such systems known today. Synchronisation in sdB binaries is discussed both from the theoretical and the observational point of view. The masses and the nature of the unseen companions could be constrained in 31 cases. We found orbital synchronisation most likely to be established in binaries with orbital periods shorter than . Only in five cases it was impossible to decide whether the sdB's companion is a white dwarf or an M dwarf. The companions to seven sdBs could be clearly identified as late M stars. One binary may have a brown dwarf companion. The unseen companions of nine sdBs are white dwarfs with typical masses. The mass of one white dwarf companion is very low. In eight cases (including the well known system KPD1930+2752) the companion mass exceeds , four of which even exceed the Chandrasekhar limit indicating that they may be neutron stars. Even stellar mass black holes are possible for the most massive companions. The distribution of the inclinations of the systems with low mass companions appears to be consistent with expectations, whereas a lack of high inclinations becomes obvious for the massive systems. We show that the formation of such systems can be explained with common envelope evolution and present an appropriate formation channel including two phases of unstable mass transfer and one supernova explosion. The sample also contains a candidate post-RGB star, which rotates fast despite its long orbital period. The post-RGB stars are expected to spin-up caused by their ongoing contraction. The age of the sdB is another important factor. If the EHB star is too young, the synchronisation process might not be finished yet. Estimating the ages of the target stars from their positions on the EHB band, we found PG 2345+318, which is known not to be synchronised, to lie near the zero-age extreme horizontal branch as are the massive candidates PG 1232-136, PG 1432+159 and PG 1101+249. These star may possibly be too young to have reached synchronisation. The derived large fraction of putative massive sdB binary systems in low inclination orbits is inconsistent with theoretical predictions. Even if we dismiss three candidates because they may be too young and assume that the other sdB primaries are of low mass, PG 1743+477 and, in particular, HE 0532-4503 remain as candidates whose companions may have masses close to or above the Chandrasekhar limit. X-ray observations and accurate photometry are suggested to clarify their nature. As high inclination systems must also exist, an appropriate survey has already been launched to find such binaries.Peer reviewe
Massive stars in the hinterland of the young cluster, Westerlund 2
Accepted for publication in MNRAS, 13 July 2018. 16 pages, plus one-page table in an appendix.An unsettled question concerning the formation and distribution of massive stars is whether they must be born in massive clusters and, if found in less dense environments, whether they must have migrated there. With the advent of wide-area digital photometric surveys, it is now possible to identify massive stars away from prominent Galactic clusters without bias. In this study we consider 40 candidate OB stars found in the field around the young massive cluster, Westerlund 2, by Mohr-Smith et al.: these are located inside a box of 1.5 × 1.5 deg 2 and are selected on the basis of their extinctions and K magnitudes.We present VLT/X-shooter spectra of two of the hottest O stars, respectively 11 and 22 arcmin from the centre of Westerlund 2. They are confirmed as O4V stars, with stellar masses likely to be in excess of 40 M ·. Their radial velocities relative to the non-binary reference object, MSP 182, in Westerlund 2 are -29.4 ± 1.7 and -14.4 ± 2.2 km s -1, respectively. Using Gaia DR2 proper motions we find that between 8 and 11 early O/WR stars in the studied region (including the two VLT targets, plus WR 20c and WR 20aa) could have been ejected fromWesterlund 2 in the last one million years. This represents an efficiency of massive-star ejection of up to ~ 25 per cent. On sky, the positions of these stars and their proper motions show a near N-S alignment. We discuss the possibility that these results are a consequence of prior sub-cluster merging combining with dynamical ejection.Peer reviewe
- …