21 research outputs found

    A new bearing fault diagnosis scheme using MED-morphological filter and ridge demodulation analysis

    Get PDF
    For rolling bearing diagnosis, the major challenge of signal processing technique is to extract the quasi-periodic impulses which generated by rolling bearing fault, especially when rolling bearing operated in the condition of heavy noise. This paper proposed a new bearing fault diagnosis scheme. First, the Minimum Entropy Deconvolution (MED) is taken to obtain the impulse excitations from the bearing vibration signal. Then, two kinds of morphological filter, named average filter(AVG) and difference filter (DIF), are used as the assisted filtering unit to reduce the random noise in original signal and integrate the positive and negative impulse excitations in MED filtered signal, respectively. At last, the STFT based ridge demodulation analysis is applied to the purified signal, and the bearing fault is easily identified by spectral analysis of the demodulated signal. Two simulated signal are analyzed to test the performance of the proposed scheme. In the first case, the periodic impulse signal adding with random noise is analyzed. The result shows that MED-AVG-DIA is the best scheme for impulse feature extraction. In the second case, the pure impulse signal which filtered by MED is analyzed. The result shows that STFT based ridge demodulation analysis can achieve better demodulation effect than other demodulation methods. The proposed fault diagnosis scheme has been further verified by simulation signal and measured vibration signals of defective bearing. The result shown that the proposed scheme is feasible and effective for the fault diagnosis of rolling bearing

    An intelligent fault diagnosis method using variable weight artificial immune recognizers (V-AIR)

    Get PDF
    The Artificial Immune Recognition System (AIRS), which has been proved to be a successful classification method in the field of Artificial Immune Systems, has been used in many classification problems and gained good classification effect. However, the network inhibition mechanisms used in these methods are based on the threshold inhibition and the cells with low affinity will be deleted directly from the network, which will misrepresent the key features of the data set for not considering the density information within the data. In this paper, we utilize the concept of data potential field and propose a new weight optimizing network inhibition algorithm called variable weight artificial immune recognizer (V-AIR) where we replace the network inhibiting mechanism based on affinity with the inhibiting mechanism based on weight optimizing. The concept of data potential field was also used to describe the data distribution around training samples and the pattern of a training data belongs to the class with the largest potential field. At last, we used this algorithm to rolling bearing analog fault diagnosis and reciprocating compressor valves fault diagnosis, which get a good classification effect

    Neighborhood preserving discrimination for rotor fault feature data set dimensionally reduction

    Get PDF
    NPP (Neighborhood Preserving Projections) is an incremental subspace learning methods which has a nature of maintaining the data local neighborhood geometry constant. To improve the discriminatory power of NPP, NPD (Neighborhood Preserving Discrimination) algorithm was proposed to be used for the rotor system fault data set feature dimensionality reduction. Floyd algorithm based on graph theory and MMC (Maximum Margin Criterion) were introduced in the NPP which makes NPD avoid the short-circuit problem that occurs in the high curvature high dimensional space data sets, while enhancing data discrimination information during the dimensionality reduction. In addition, NPD can maintain the manifold of data set unchanged. At last, the rotor-bearing experiment has been made to verify the effectiveness of the NPD method

    Kernel Local Linear Discriminate Method for Dimensionality Reduction and Its Application in Machinery Fault Diagnosis

    No full text
    Dimensionality reduction is a crucial task in machinery fault diagnosis. Recently, as a popular dimensional reduction technology, manifold learning has been successfully used in many fields. However, most of these technologies are not suitable for the task, because they are unsupervised in nature and fail to discover the discriminate structure in the data. To overcome these weaknesses, kernel local linear discriminate (KLLD) algorithm is proposed. KLLD algorithm is a novel algorithm which combines the advantage of neighborhood preserving projections (NPP), Floyd, maximum margin criterion (MMC), and kernel trick. KLLD has four advantages. First of all, KLLD is a supervised dimension reduction method that can overcome the out-of-sample problems. Secondly, short-circuit problem can be avoided. Thirdly, KLLD algorithm can use between-class scatter matrix and inner-class scatter matrix more efficiently. Lastly, kernel trick is included in KLLD algorithm to find more precise solution. The main feature of the proposed method is that it attempts to both preserve the intrinsic neighborhood geometry of the increased data and exact the discriminate information. Experiments have been performed to evaluate the new method. The results show that KLLD has more benefits than traditional methods

    Kernel Local Linear Discriminate Method for Dimensionality Reduction and Its Application in Machinery Fault Diagnosis

    No full text
    Dimensionality reduction is a crucial task in machinery fault diagnosis. Recently, as a popular dimensional reduction technology, manifold learning has been successfully used in many fields. However, most of these technologies are not suitable for the task, because they are unsupervised in nature and fail to discover the discriminate structure in the data. To overcome these weaknesses, kernel local linear discriminate (KLLD) algorithm is proposed. KLLD algorithm is a novel algorithm which combines the advantage of neighborhood preserving projections (NPP), Floyd, maximum margin criterion (MMC), and kernel trick. KLLD has four advantages. First of all, KLLD is a supervised dimension reduction method that can overcome the out-of-sample problems. Secondly, short-circuit problem can be avoided. Thirdly, KLLD algorithm can use between-class scatter matrix and inner-class scatter matrix more efficiently. Lastly, kernel trick is included in KLLD algorithm to find more precise solution. The main feature of the proposed method is that it attempts to both preserve the intrinsic neighborhood geometry of the increased data and exact the discriminate information. Experiments have been performed to evaluate the new method. The results show that KLLD has more benefits than traditional methods

    Effect of blade tips ice on vibration performance of wind turbines

    No full text
    There are abundant wind resources in cold regions. Therefore, it is essential to systematically study some icing situation of wind turbines blades (especially the blade tip area) to reduce the loss of wind turbines blades caused by faults, which has important significance to the development and utilization of superior wind power resources in alpine regions in the future. An S8025 airfoil blade was used as this research object to research this influence of different loads on this typical vibration performance of a wind turbines with blade tip icing. The results display that the tip area of these wind turbines will be covered with ice because of the small chord length. Blade tip icing results in an increase in blade mass, blade stiffness, blade torsional stiffness, and other parameters, and the low-order vibration frequencies decreases while the high-order vibration frequencies increases. The centrifugal force load significantly affects the vibration performance of a wind turbines with blade tip icing. The results can be used as a reference to improve the deicing of wind turbines blade tips
    corecore