274 research outputs found
Construction of N = 2 Chiral Supergravity Compatible with the Reality Condition
We construct N = 2 chiral supergravity (SUGRA) which leads to Ashtekar's
canonical formulation. The supersymmetry (SUSY) transformation parameters are
not constrained at all and auxiliary fields are not required in contrast with
the method of the two-form gravity. We also show that our formulation is
compatible with the reality condition, and that its real section is reduced to
the usual N = 2 SUGRA up to an imaginary boundary term.Comment: 16 pages, late
Quasinormal modes prefer supersymmetry ?
One ambiguity in loop quantum gravity is the appearance of a free parameter
which is called Immirzi parameter. Recently Dreyer has argued that this
parameter may be fixed by considering the quasinormal mode spectrum of black
holes, while at the price of changing the gauge group to SO(3) rather than the
original one SU(2). Physically such a replacement is not quite natural or
desirable. In this paper we study the relationship between the black hole
entropy and the quasi normal mode spectrum in the loop quantization of N=1
supergravity. We find that a single value of the Immirzi parameter agrees with
the semiclassical expectations as well. But in this case the lowest
supersymmetric representation dominates, fitting well with the result based on
statistical consideration. This suggests that, so long as fermions are included
in the theory, supersymemtry may be favored for the consistency of the low
energy limit of loop quantum gravity.Comment: 3 page
Light-cone Gauge NSR Strings in Noncritical Dimensions II -- Ramond Sector
Light-cone gauge superstring theory in noncritical dimensions corresponds to
a worldsheet theory with nonstandard longitudinal part in the conformal gauge.
The longitudinal part of the worldsheet theory is a superconformal field theory
called X^{\pm} CFT. We show that the X^{\pm} CFT combined with the
super-reparametrization ghost system can be described by free variables. It is
possible to express the correlation functions in terms of these free variables.
Bosonizing the free variables, we construct the spin fields and BRST invariant
vertex operators for the Ramond sector in the conformal gauge formulation. By
using these vertex operators, we can rewrite the tree amplitudes of the
noncritical light-cone gauge string field theory, with external lines in the
(R,R) sector as well as those in the (NS,NS) sector, in a BRST invariant way.Comment: 33 pages; v2: minor modification
Infinity Cancellation, Type I' Compactification and String S-Matrix Functional
Nonvanishing tadpoles and possible infinities associated in the multiparticle
amplitudes are discussed with regard to the disk and diagrams of the
Type I' compactification. We find that the infinity cancellation of
type theory extends to this case as well despite the presence of tadpoles
localized in the D-brane world-volume and the orientifold surfaces. Formalism
of string S-matrix generating functional is presented to find a consistent
string background as c-number source function: we find this only treats the
cancellation of the tadpoles in the linearized approximation. Our formalism
automatically provides representation of the string amplitudes on this
background to all orders in .Comment: 18 pages, Latex, more references adde
Supersymmetry algebra in N = 1 chiral supergravity
We consider the supersymmetry (SUSY) transformations in the chiral Lagrangian
for supergravity (SUGRA) with the complex tetrad following the method
used in the usual SUGRA, and present the explicit form of the SUSY
trasformations in the first-order form. The SUSY transformations are generated
by two independent Majorana spinor parameters, which are apparently different
from the constrained parameters employed in the method of the 2-form gravity.
We also calculate the commutator algebra of the SUSY transformations on-shell.Comment: 10 pages, late
N = 3 chiral supergravity compatible with the reality condition and higher N chiral Lagrangian density
We obtain N = 3 chiral supergravity (SUGRA) compatible with the reality
condition by applying the prescription of constructing the chiral Lagrangian
density from the usual SUGRA. The chiral Lagrangian density in
first-order form, which leads to the Ashtekar's canonical formulation, is
determined so that it reproduces the second-order Lagrangian density of the
usual SUGRA especially by adding appropriate four-fermion contact terms. We
show that the four-fermion contact terms added in the first-order chiral
Lagrangian density are the non-minimal terms required from the invariance under
first-order supersymmetry transformations. We also discuss the case of higher N
theories, especially for N = 4 and N = 8.Comment: 20 pages, Latex, some more discussions and new references added, some
typos corrected, accepted for publication in Physical Review
Multiphoton Transitions in a Spin System Driven by Strong Bichromatic Field
EPR transient nutation spectroscopy is used to measure the effective field
(Rabi frequency) for multiphoton transitions in a two-level spin system
bichromatically driven by a transverse microwave (MW) field and a longitudinal
radio-frequency (RF) field. The behavior of the effective field amplitude is
examined in the case of a relatively strong MW field, when the derivation of
the effective Hamiltonian cannot be reduced to first-order perturbation theory
in w_{1} / w_{rf} (w_{1} is the microwave Rabi frequency, w_{rf} is the RF
frequency). Experimental results are consistently interpreted by taking into
account the contributions of second and third order in w_{1} / w_{rf} evaluated
by Krylov-Bogolyubov-Mitropolsky averaging. In the case of inhomogeneously
broadened EPR line, the third-order correction modifies the nutation frequency,
while the second-order correction gives rise to a change in the nutation
amplitude due to a Bloch-Siegert shift.Comment: 7 pages, 6 figure
Anti-self-dual Maxwell solutions on hyperk\"ahler manifold and N=2 supersymmetric Ashtekar gravity
Anti-self-dual (ASD) Maxwell solutions on 4-dimensional hyperk\"ahler
manifolds are constructed. The N=2 supersymmetric half-flat equations are
derived in the context of the Ashtekar formulation of N=2 supergravity. These
equations show that the ASD Maxwell solutions have a direct connection with the
solutions of the reduced N=2 supersymmetric ASD Yang-Mills equations with a
special choice of gauge group. Two examples of the Maxwell solutions are
presented.Comment: 9 page
Minimal Off-Shell Version of N = 1 Chiral Supergravity
We construct the minimal off-shell formulation of N = 1 chiral supergravity
(SUGRA) introducing a complex antisymmetric tensor field and a
complex axial-vector field as auxiliary fields. The resulting algebra
of the right- and left-handed supersymmetry (SUSY) transformations closes off
shell and generates chiral gauge transforamtions and vector gauge
transformations in addition to the transformations which appear in the case
without auxiliary fields.Comment: 9 pages, late
- …