5 research outputs found

### On Locally Decodable Codes in Resource Bounded Channels

Constructions of locally decodable codes (LDCs) have one of two undesirable properties: low rate or high locality (polynomial in the length of the message). In settings where the encoder/decoder have already exchanged cryptographic keys and the channel is a probabilistic polynomial time (PPT) algorithm, it is possible to circumvent these barriers and design LDCs with constant rate and small locality. However, the assumption that the encoder/decoder have exchanged cryptographic keys is often prohibitive. We thus consider the problem of designing explicit and efficient LDCs in settings where the channel is slightly more constrained than the encoder/decoder with respect to some resource e.g., space or (sequential) time. Given an explicit function f that the channel cannot compute, we show how the encoder can transmit a random secret key to the local decoder using f(?) and a random oracle ?(?). We then bootstrap the private key LDC construction of Ostrovsky, Pandey and Sahai (ICALP, 2007), thereby answering an open question posed by Guruswami and Smith (FOCS 2010) of whether such bootstrapping techniques are applicable to LDCs in channel models weaker than just PPT algorithms. Specifically, in the random oracle model we show how to construct explicit constant rate LDCs with locality of polylog in the security parameter against various resource constrained channels

### Efficient Partial Credit Grading of Proof Blocks Problems

Proof Blocks is a software tool which allows students to practice writing
mathematical proofs by dragging and dropping lines instead of writing proofs
from scratch. In this paper, we address the problem of assigning partial credit
to students completing Proof Blocks problems. Because of the large solution
space, it is computationally expensive to calculate the difference between an
incorrect student solution and some correct solution, restricting the ability
to automatically assign students partial credit. We propose a novel algorithm
for finding the edit distance from an arbitrary student submission to some
correct solution of a Proof Blocks problem. We benchmark our algorithm on
thousands of student submissions from Fall 2020, showing that our novel
algorithm can perform over 100 times better than the naive algorithm on real
data. Our new algorithm has further applications in grading Parson's Problems,
as well as any other kind of homework or exam problem where the solution space
may be modeled as a directed acyclic graph

### Locally Decodable/Correctable Codes for Insertions and Deletions

Recent efforts in coding theory have focused on building codes for insertions and deletions, called insdel codes, with optimal trade-offs between their redundancy and their error-correction capabilities, as well as efficient encoding and decoding algorithms.
In many applications, polynomial running time may still be prohibitively expensive, which has motivated the study of codes with super-efficient decoding algorithms. These have led to the well-studied notions of Locally Decodable Codes (LDCs) and Locally Correctable Codes (LCCs). Inspired by these notions, Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015) generalized Hamming LDCs to insertions and deletions. To the best of our knowledge, these are the only known results that study the analogues of Hamming LDCs in channels performing insertions and deletions.
Here we continue the study of insdel codes that admit local algorithms. Specifically, we reprove the results of Ostrovsky and Paskin-Cherniavsky for insdel LDCs using a different set of techniques. We also observe that the techniques extend to constructions of LCCs. Specifically, we obtain insdel LDCs and LCCs from their Hamming LDCs and LCCs analogues, respectively. The rate and error-correction capability blow up only by a constant factor, while the query complexity blows up by a poly log factor in the block length.
Since insdel locally decodable/correctble codes are scarcely studied in the literature, we believe our results and techniques may lead to further research. In particular, we conjecture that constant-query insdel LDCs/LCCs do not exist

### Fixed-Parameter Algorithms for Longest Heapable Subsequence and Maximum Binary Tree

A heapable sequence is a sequence of numbers that can be arranged in a min-heap data structure. Finding a longest heapable subsequence of a given sequence was proposed by Byers, Heeringa, Mitzenmacher, and Zervas (ANALCO 2011) as a generalization of the well-studied longest increasing subsequence problem and its complexity still remains open. An equivalent formulation of the longest heapable subsequence problem is that of finding a maximum-sized binary tree in a given permutation directed acyclic graph (permutation DAG). In this work, we study parameterized algorithms for both longest heapable subsequence and maximum-sized binary tree. We introduce alphabet size as a new parameter in the study of computational problems in permutation DAGs and show that this parameter with respect to a fixed topological ordering admits a complete characterization and a polynomial time algorithm. We believe that this parameter is likely to be useful in the context of optimization problems defined over permutation DAGs

### The Maximum Binary Tree Problem

We introduce and investigate the approximability of the maximum binary tree problem (MBT) in directed and undirected graphs. The goal in MBT is to find a maximum-sized binary tree in a given graph. MBT is a natural variant of the well-studied longest path problem, since both can be viewed as finding a maximum-sized tree of bounded degree in a given graph.
The connection to longest path motivates the study of MBT in directed acyclic graphs (DAGs), since the longest path problem is solvable efficiently in DAGs. In contrast, we show that MBT in DAGs is in fact hard: it has no efficient exp(-O(log n/ log log n))-approximation algorithm under the exponential time hypothesis, where n is the number of vertices in the input graph. In undirected graphs, we show that MBT has no efficient exp(-O(log^0.63 n))-approximation under the exponential time hypothesis. Our inapproximability results rely on self-improving reductions and structural properties of binary trees. We also show constant-factor inapproximability assuming P ? NP.
In addition to inapproximability results, we present algorithmic results along two different flavors: (1) We design a randomized algorithm to verify if a given directed graph on n vertices contains a binary tree of size k in 2^k poly(n) time. (2) Motivated by the longest heapable subsequence problem, introduced by Byers, Heeringa, Mitzenmacher, and Zervas, ANALCO 2011, which is equivalent to MBT in permutation DAGs, we design efficient algorithms for MBT in bipartite permutation graphs