323 research outputs found
Distributed Kernel Regression: An Algorithm for Training Collaboratively
This paper addresses the problem of distributed learning under communication
constraints, motivated by distributed signal processing in wireless sensor
networks and data mining with distributed databases. After formalizing a
general model for distributed learning, an algorithm for collaboratively
training regularized kernel least-squares regression estimators is derived.
Noting that the algorithm can be viewed as an application of successive
orthogonal projection algorithms, its convergence properties are investigated
and the statistical behavior of the estimator is discussed in a simplified
theoretical setting.Comment: To be presented at the 2006 IEEE Information Theory Workshop, Punta
del Este, Uruguay, March 13-17, 200
Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections
Wireless sensor networks (WSNs) have attracted considerable attention in
recent years and motivate a host of new challenges for distributed signal
processing. The problem of distributed or decentralized estimation has often
been considered in the context of parametric models. However, the success of
parametric methods is limited by the appropriateness of the strong statistical
assumptions made by the models. In this paper, a more flexible nonparametric
model for distributed regression is considered that is applicable in a variety
of WSN applications including field estimation. Here, starting with the
standard regularized kernel least-squares estimator, a message-passing
algorithm for distributed estimation in WSNs is derived. The algorithm can be
viewed as an instantiation of the successive orthogonal projection (SOP)
algorithm. Various practical aspects of the algorithm are discussed and several
numerical simulations validate the potential of the approach.Comment: To appear in the Proceedings of the SPIE Conference on Advanced
Signal Processing Algorithms, Architectures and Implementations XV, San
Diego, CA, July 31 - August 4, 200
A Better Good-Turing Estimator for Sequence Probabilities
We consider the problem of estimating the probability of an observed string
drawn i.i.d. from an unknown distribution. The key feature of our study is that
the length of the observed string is assumed to be of the same order as the
size of the underlying alphabet. In this setting, many letters are unseen and
the empirical distribution tends to overestimate the probability of the
observed letters. To overcome this problem, the traditional approach to
probability estimation is to use the classical Good-Turing estimator. We
introduce a natural scaling model and use it to show that the Good-Turing
sequence probability estimator is not consistent. We then introduce a novel
sequence probability estimator that is indeed consistent under the natural
scaling model.Comment: ISIT 2007, to appea
Collaborative Training in Sensor Networks: A graphical model approach
Graphical models have been widely applied in solving distributed inference
problems in sensor networks. In this paper, the problem of coordinating a
network of sensors to train a unique ensemble estimator under communication
constraints is discussed. The information structure of graphical models with
specific potential functions is employed, and this thus converts the
collaborative training task into a problem of local training plus global
inference. Two important classes of algorithms of graphical model inference,
message-passing algorithm and sampling algorithm, are employed to tackle
low-dimensional, parametrized and high-dimensional, non-parametrized problems
respectively. The efficacy of this approach is demonstrated by concrete
examples
- …
