323 research outputs found

    Distributed Kernel Regression: An Algorithm for Training Collaboratively

    Full text link
    This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.Comment: To be presented at the 2006 IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 200

    Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections

    Full text link
    Wireless sensor networks (WSNs) have attracted considerable attention in recent years and motivate a host of new challenges for distributed signal processing. The problem of distributed or decentralized estimation has often been considered in the context of parametric models. However, the success of parametric methods is limited by the appropriateness of the strong statistical assumptions made by the models. In this paper, a more flexible nonparametric model for distributed regression is considered that is applicable in a variety of WSN applications including field estimation. Here, starting with the standard regularized kernel least-squares estimator, a message-passing algorithm for distributed estimation in WSNs is derived. The algorithm can be viewed as an instantiation of the successive orthogonal projection (SOP) algorithm. Various practical aspects of the algorithm are discussed and several numerical simulations validate the potential of the approach.Comment: To appear in the Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations XV, San Diego, CA, July 31 - August 4, 200

    A Better Good-Turing Estimator for Sequence Probabilities

    Full text link
    We consider the problem of estimating the probability of an observed string drawn i.i.d. from an unknown distribution. The key feature of our study is that the length of the observed string is assumed to be of the same order as the size of the underlying alphabet. In this setting, many letters are unseen and the empirical distribution tends to overestimate the probability of the observed letters. To overcome this problem, the traditional approach to probability estimation is to use the classical Good-Turing estimator. We introduce a natural scaling model and use it to show that the Good-Turing sequence probability estimator is not consistent. We then introduce a novel sequence probability estimator that is indeed consistent under the natural scaling model.Comment: ISIT 2007, to appea

    Collaborative Training in Sensor Networks: A graphical model approach

    Full text link
    Graphical models have been widely applied in solving distributed inference problems in sensor networks. In this paper, the problem of coordinating a network of sensors to train a unique ensemble estimator under communication constraints is discussed. The information structure of graphical models with specific potential functions is employed, and this thus converts the collaborative training task into a problem of local training plus global inference. Two important classes of algorithms of graphical model inference, message-passing algorithm and sampling algorithm, are employed to tackle low-dimensional, parametrized and high-dimensional, non-parametrized problems respectively. The efficacy of this approach is demonstrated by concrete examples
    corecore