4,206 research outputs found

    Correlations of electromagnetic fields in chaotic cavities

    Full text link
    We consider the fluctuations of electromagnetic fields in chaotic microwave cavities. We calculate the transversal and longitudinal correlation function based on a random wave assumption and compare the predictions with measurements on two- and three-dimensional microwave cavities.Comment: Europhys style, 8 pages, 3 figures (included

    Scaling behavior of a one-dimensional correlated disordered electronic System

    Full text link
    A one-dimensional diagonal tight binding electronic system with correlated disorder is investigated. The correlation of the random potential is exponentially decaying with distance and its correlation length diverges as the concentration of "wrong sign" approaches to 1 or 0. The correlated random number sequence can be generated easily with a binary sequence similar to that of a one-dimensional spin glass system. The localization length (LL) and the integrated density of states (IDOS) for long chains are computed. A comparison with numerical results is made with the recently developed scaling technique results. The Coherent Potential Approximation (CPA) is also adopted to obtain scaling functions for both the LL and the IDOS. We confirmed that the scaling functions show a crossover near the band edge and establish their relation to the concentration. For concentrations near to 0 or 1 (longer correlation length case), the scaling behavior is followed only for a very limited range of the potential strengths.Comment: will appear in PR

    Formation and interaction of resonance chains in the open 3-disk system

    Get PDF
    In ballistic open quantum systems one often observes that the resonances in the complex-energy plane form a clear chain structure. Taking the open 3-disk system as a paradigmatic model system, we investigate how this chain structure is reflected in the resonance states and how it is connected to the underlying classical dynamics. Using an efficient scattering approach we observe that resonance states along one chain are clearly correlated while resonance states of different chains show an anticorrelation. Studying the phase space representations of the resonance states we find that their localization in phase space oscillate between different regions of the classical trapped set as one moves along the chains and that these oscillations are connected to a modulation of the resonance spacing. A single resonance chain is thus no WKB quantization of a single periodic orbits, but the structure of several oscillating chains arises from the interaction of several periodic orbits. We illuminate the physical mechanism behind these findings by combining the semiclassical cycle expansion with a quantum graph model.Comment: 25 pages, 15 figure

    Current and vorticity auto correlation functions in open microwave billiards

    Full text link
    Using the equivalence between the quantum-mechanical probability density in a quantum billiard and the Poynting vector in the corresponding microwave system, current distributions were studied in a quantum dot like cavity, as well as in a Robnik billiard with lambda=0.4, and an introduced ferrite cylinder. Spatial auto correlation functions for currents and vorticity were studied and compared with predictions from the random-superposition-of-plane-waves hypothesis. In addition different types of vortex neighbour spacing distributions were determined and compared with theory.Comment: PTP-LaTeX, 10 pages with 6 figures submitted to Progress of Theoretical Physics Supplemen

    Selective enhancement of topologically induced interface states in a dielectric resonator chain

    Full text link
    The recent realization of topological phases in insulators and superconductors has advanced the quest for robust quantum technologies. The prospects to implement the underlying topological features controllably has given incentive to explore optical platforms for analogous realizations. Here we realize a topologically induced defect state in a chain of dielectric microwave resonators and show that the functionality of the system can be enhanced by supplementing topological protection with non-hermitian symmetries that do not have an electronic counterpart. We draw on a characteristic topological feature of the defect state, namely, that it breaks a sublattice symmetry. This isolates the state from losses that respect parity-time symmetry, which enhances its visibility relative to all other states both in the frequency and in the time domain. This mode selection mechanism naturally carries over to a wide range of topological and parity-time symmetric optical platforms, including couplers, rectifiers and lasers.Comment: 5 pages, 4 figures, + supplementary information (3 pages, 4 figures

    Waveguide photonic limiters based on topologically protected resonant modes

    Full text link
    We propose a concept of chiral photonic limiters utilising topologically protected localised midgap defect states in a photonic waveguide. The chiral symmetry alleviates the effects of structural imperfections and guaranties a high level of resonant transmission for low intensity radiation. At high intensity, the light-induced absorption can suppress the localised modes, along with the resonant transmission. In this case the entire photonic structure becomes highly reflective within a broad frequency range, thus increasing dramatically the damage threshold of the limiter. Here we demonstrate experimentally the principle of operation of such photonic structures using a waveguide consisting of coupled dielectric microwave resonators.Comment: 6 pages, 4 figure

    Experimental Observation of a Fundamental Length Scale of Waves in Random Media

    Full text link
    Waves propagating through a weakly scattering random medium show a pronounced branching of the flow accompanied by the formation of freak waves, i.e., extremely intense waves. Theory predicts that this strong fluctuation regime is accompanied by its own fundamental length scale of transport in random media, parametrically different from the mean free path or the localization length. We show numerically how the scintillation index can be used to assess the scaling behavior of the branching length. We report the experimental observation of this scaling using microwave transport experiments in quasi-two-dimensional resonators with randomly distributed weak scatterers. Remarkably, the scaling range extends much further than expected from random caustics statistics.Comment: 5 pages, 5 figure

    Experimental observation of the mobility edge in a waveguide with correlated disorder

    Full text link
    The tight-binding model with correlated disorder introduced by Izrailev and Krokhin [PRL 82, 4062 (1999)] has been extended to the Kronig-Penney model. The results of the calculations have been compared with microwave transmission spectra through a single-mode waveguide with inserted correlated scatterers. All predicted bands and mobility edges have been found in the experiment, thus demonstrating that any wanted combination of transparent and non-transparent frequency intervals can be realized experimentally by introducing appropriate correlations between scatterers.Comment: RevTex, 4 pages including 4 Postscript figure

    Spectral properties of microwave graphs with local absorption

    Full text link
    The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50 Ohm load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.Comment: 7 pages, 7 figure
    • …