1,015 research outputs found
Beam test results of 3D fine-grained scintillator detector prototype for a T2K ND280 neutrino active target
An upgrade of the long baseline neutrino experiment T2K near detector ND280
is currently being developed with the goal to reduce systematic uncertainties
in the prediction of number of events at the far detector Super-Kamiokande. The
upgrade program includes the design and construction of a new highly granular
fully active scintillator detector with 3D WLS fiber readout as a neutrino
target. The detector of about in size and a mass
of 2.2~tons will be assembled from about plastic
scintillator cubes of . Each cube is read out by three
orthogonal Kuraray Y11 Wave Length Shifting (WLS) fibers threaded through the
detector. A detector prototype made of 125 cubes was assembled and tested in a
charged particle test beam at CERN in the fall of 2017. This paper presents the
results obtained on the light yield and timing as well as on the optical
cross-talk between the cubes.Comment: 5 pages, 8 figure
Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes
The design, construction and testing of neutrino detector prototypes at CERN
are ongoing activities. This document reports on the design of solid state baby
MIND and TASD detector prototypes and outlines requirements for a test beam at
CERN to test these, tentatively planned on the H8 beamline in the North Area,
which is equipped with a large aperture magnet. The current proposal is
submitted to be considered in light of the recently approved projects related
to neutrino activities with the SPS in the North Area in the medium term
2015-2020
The T2K Side Muon Range Detector
The T2K experiment is a long baseline neutrino oscillation experiment aiming
to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam
is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed
with the 295 km distant Super- Kamiokande Detector and monitored by a suite of
near detectors at 280m from the proton target. The near detectors include a
magnetized off-axis detector (ND280) which measures the un-oscillated neutrino
flux and neutrino cross sections. The present paper describes the outermost
component of ND280 which is a side muon range detector (SMRD) composed of
scintillation counters with embedded wavelength shifting fibers and Multi-Pixel
Photon Counter read-out. The components, performance and response of the SMRD
are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference
Baby MIND: A magnetised spectrometer for the WAGASCI experiment
The WAGASCI experiment being built at the J-PARC neutrino beam line will
measure the difference in cross sections from neutrinos interacting with a
water and scintillator targets, in order to constrain neutrino cross sections,
essential for the T2K neutrino oscillation measurements. A prototype Magnetised
Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN
to act as a magnetic spectrometer behind the main WAGASCI target to be able to
measure the charge and momentum of the outgoing muon from neutrino charged
current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title +
4 pages, LaTeX, 6 figure
Synchronization of the Distributed Readout Frontend Electronics of the Baby MIND Detector
Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test
Baby MIND Experiment Construction Status
Baby MIND is a magnetized iron neutrino detector, with novel design features,
and is planned to serve as a downstream magnetized muon spectrometer for the
WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main
goals of this experiment is to reduce systematic uncertainties relevant to
CP-violation searches, by measuring the neutrino contamination in the
anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at
CERN, and is planned to be operational in Japan in October 2017.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). 4
pages, LaTeX, 7 figure
- …
