289 research outputs found

    Property-Driven Fence Insertion using Reorder Bounded Model Checking

    Full text link
    Modern architectures provide weaker memory consistency guarantees than sequential consistency. These weaker guarantees allow programs to exhibit behaviours where the program statements appear to have executed out of program order. Fortunately, modern architectures provide memory barriers (fences) to enforce the program order between a pair of statements if needed. Due to the intricate semantics of weak memory models, the placement of fences is challenging even for experienced programmers. Too few fences lead to bugs whereas overuse of fences results in performance degradation. This motivates automated placement of fences. Tools that restore sequential consistency in the program may insert more fences than necessary for the program to be correct. Therefore, we propose a property-driven technique that introduces "reorder-bounded exploration" to identify the smallest number of program locations for fence placement. We implemented our technique on top of CBMC; however, in principle, our technique is generic enough to be used with any model checker. Our experimental results show that our technique is faster and solves more instances of relevant benchmarks as compared to earlier approaches.Comment: 18 pages, 3 figures, 4 algorithms. Version change reason : new set of results and publication ready version of FM 201

    Sound Static Deadlock Analysis for C/Pthreads (Extended Version)

    Full text link
    We present a static deadlock analysis approach for C/pthreads. The design of our method has been guided by the requirement to analyse real-world code. Our approach is sound (i.e., misses no deadlocks) for programs that have defined behaviour according to the C standard, and precise enough to prove deadlock-freedom for a large number of programs. The method consists of a pipeline of several analyses that build on a new context- and thread-sensitive abstract interpretation framework. We further present a lightweight dependency analysis to identify statements relevant to deadlock analysis and thus speed up the overall analysis. In our experimental evaluation, we succeeded to prove deadlock-freedom for 262 programs from the Debian GNU/Linux distribution with in total 2.6 MLOC in less than 11 hours

    Chaining Test Cases for Reactive System Testing (extended version)

    Full text link
    Testing of synchronous reactive systems is challenging because long input sequences are often needed to drive them into a state at which a desired feature can be tested. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the time required for resetting is high. This paper presents an approach to discovering a test case chain---a single software execution that covers a group of test goals and minimises overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimise the number of test chains if a single test chain is infeasible. We report experimental results with a prototype tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators.Comment: extended version of paper published at ICTSS'1

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782

    Lost in Abstraction: Monotonicity in Multi-Threaded Programs (Extended Technical Report)

    Full text link
    Monotonicity in concurrent systems stipulates that, in any global state, extant system actions remain executable when new processes are added to the state. This concept is not only natural and common in multi-threaded software, but also useful: if every thread's memory is finite, monotonicity often guarantees the decidability of safety property verification even when the number of running threads is unknown. In this paper, we show that the act of obtaining finite-data thread abstractions for model checking can be at odds with monotonicity: Predicate-abstracting certain widely used monotone software results in non-monotone multi-threaded Boolean programs - the monotonicity is lost in the abstraction. As a result, well-established sound and complete safety checking algorithms become inapplicable; in fact, safety checking turns out to be undecidable for the obtained class of unbounded-thread Boolean programs. We demonstrate how the abstract programs can be modified into monotone ones, without affecting safety properties of the non-monotone abstraction. This significantly improves earlier approaches of enforcing monotonicity via overapproximations
    • …
    corecore