394 research outputs found
Positional Games
Positional games are a branch of combinatorics, researching a variety of
two-player games, ranging from popular recreational games such as Tic-Tac-Toe
and Hex, to purely abstract games played on graphs and hypergraphs. It is
closely connected to many other combinatorial disciplines such as Ramsey
theory, extremal graph and set theory, probabilistic combinatorics, and to
computer science. We survey the basic notions of the field, its approaches and
tools, as well as numerous recent advances, standing open problems and
promising research directions.Comment: Submitted to Proceedings of the ICM 201
Minors in expanding graphs
Extending several previous results we obtained nearly tight estimates on the
maximum size of a clique-minor in various classes of expanding graphs. These
results can be used to show that graphs without short cycles and other H-free
graphs contain large clique-minors, resolving some open questions in this area
Pseudo-random graphs
Random graphs have proven to be one of the most important and fruitful
concepts in modern Combinatorics and Theoretical Computer Science. Besides
being a fascinating study subject for their own sake, they serve as essential
instruments in proving an enormous number of combinatorial statements, making
their role quite hard to overestimate. Their tremendous success serves as a
natural motivation for the following very general and deep informal questions:
what are the essential properties of random graphs? How can one tell when a
given graph behaves like a random graph? How to create deterministically graphs
that look random-like? This leads us to a concept of pseudo-random graphs and
the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page
- …