3 research outputs found

    Sensitizing the Sensitizer: The Synthesis and Photophysical Study of Bodipy−Pt(II)(diimine)(dithiolate) Conjugates

    No full text
    The dyads 3, 4, and 6, combining the Bodipy chromophore with a Pt(bpy)(bdt) (bpy = 2,2′-bipyridine, bdt = 1,2-benzenedithiolate, 3 and 6) or a Pt(bpy)(mnt) (mnt = maleonitriledithiolate, 4) moiety, have been synthesized and studied by UV−vis steady-state absorption, transient absorption, and emission spectroscopies and cyclic voltammetry. Comparison of the absorption spectra and cyclic voltammograms of dyads 3, 4, and 6 and those of their model compounds 1a, 2, 5, and 7 shows that the spectroscopic and electrochemical properties of the dyads are essentially the sum of their constituent chromophores, indicating negligible interaction of the constituent chromophores in the ground state. However, emission studies on 3 and 6 show a complete absence of both Bodipy-based fluorescence and the characteristic luminescence of the Pt(bpy)(bdt) unit. Dyad 4 shows a weak Pt(mnt)-based emission. Transient absorption studies show that excitation of the dyads into the Bodipy-based 1ππ* excited state is followed by singlet energy transfer (SEnT) to the Pt(dithiolate)-based 1MMLL′CT (mixed metal-ligand to ligand charge transfer) excited state (τSEnT3 = 0.6 ps, τSEnT4 = 0.5 ps, and τSEnT6 = 1.6 ps), which undergoes rapid intersystem crossing to the 3MMLL′CT state due to the heavy Pt(II) ion. The 3MMLL′CT state is then depopulated by triplet energy transfer (TEnT) to the low-lying Bodipy-based 3ππ* excited state (τTEnT3 = 8.2 ps, τTEnT4 = 5 ps, and τTEnT6 = 160 ps). The transition assignments are supported by TD-DFT calculations. Both energy-transfer processes are shown to proceed via a Dexter electron exchange mechanism. The much longer time constants for dyad 6 relative to 3 are attributed to the significantly poorer coupling and resonance of charge-separated species that are intermediates in the electron exchange process

    Sensitizing the Sensitizer: The Synthesis and Photophysical Study of Bodipy−Pt(II)(diimine)(dithiolate) Conjugates

    No full text
    The dyads 3, 4, and 6, combining the Bodipy chromophore with a Pt(bpy)(bdt) (bpy = 2,2′-bipyridine, bdt = 1,2-benzenedithiolate, 3 and 6) or a Pt(bpy)(mnt) (mnt = maleonitriledithiolate, 4) moiety, have been synthesized and studied by UV−vis steady-state absorption, transient absorption, and emission spectroscopies and cyclic voltammetry. Comparison of the absorption spectra and cyclic voltammograms of dyads 3, 4, and 6 and those of their model compounds 1a, 2, 5, and 7 shows that the spectroscopic and electrochemical properties of the dyads are essentially the sum of their constituent chromophores, indicating negligible interaction of the constituent chromophores in the ground state. However, emission studies on 3 and 6 show a complete absence of both Bodipy-based fluorescence and the characteristic luminescence of the Pt(bpy)(bdt) unit. Dyad 4 shows a weak Pt(mnt)-based emission. Transient absorption studies show that excitation of the dyads into the Bodipy-based 1ππ* excited state is followed by singlet energy transfer (SEnT) to the Pt(dithiolate)-based 1MMLL′CT (mixed metal-ligand to ligand charge transfer) excited state (τSEnT3 = 0.6 ps, τSEnT4 = 0.5 ps, and τSEnT6 = 1.6 ps), which undergoes rapid intersystem crossing to the 3MMLL′CT state due to the heavy Pt(II) ion. The 3MMLL′CT state is then depopulated by triplet energy transfer (TEnT) to the low-lying Bodipy-based 3ππ* excited state (τTEnT3 = 8.2 ps, τTEnT4 = 5 ps, and τTEnT6 = 160 ps). The transition assignments are supported by TD-DFT calculations. Both energy-transfer processes are shown to proceed via a Dexter electron exchange mechanism. The much longer time constants for dyad 6 relative to 3 are attributed to the significantly poorer coupling and resonance of charge-separated species that are intermediates in the electron exchange process

    Intersystem Crossing in Halogenated Bodipy Chromophores Used for Solar Hydrogen Production

    No full text
    A series of halogenated boron-dipyrromethene (Bodipy) chromophores with potential applications in solar energy conversion were synthesized and characterized by steady state and ultrafast laser spectroscopy. The ultrafast dynamics of the chromophores were compared between a series containing H, Br, or I at the 2,6 positions of the Bodipy dye. The parent Bodipy has a fluorescent lifetime (τ<sub>fl</sub>) of 3−5 ns, a fluorescence quantum yield (Φ<sub>fl</sub>) of 0.56, and negligible triplet state yield. Bromination enhances the intersystem crossing (ISC) such that τ<sub>fl</sub> and Φ<sub>fl</sub> decrease to ∼1.2 ns and 0.11, respectively, while iodination further accelerates ISC so that τ<sub>fl</sub> is only ∼130 ps and Φ<sub>fl</sub> is 0.011. Transient absorption experiments lead to the observation of excited state absorption bands from the singlet (S<sub>1</sub>) and triplet (T<sub>1</sub>) states at ∼345 and 447 nm, respectively, and characterization of ISC via the dynamics of these bands and the decay of S<sub>1</sub> stimulated emission
    corecore