516 research outputs found

    An adjustable focusing system for a 2 MeV H- ion beam line based on permanent magnet quadrupoles

    Get PDF
    A compact adjustable focusing system for a 2 MeV H- RFQ Linac is designed, constructed and tested based on four permanent magnet quadrupoles (PMQ). A PMQ model is realised using finite element simulations, providing an integrated field gradient of 2.35 T with a maximal field gradient of 57 T/m. A prototype is constructed and the magnetic field is measured, demonstrating good agreement with the simulation. Particle track simulations provide initial values for the quadrupole positions. Accordingly, four PMQs are constructed and assembled on the beam line, their positions are then tuned to obtain a minimal beam spot size of (1.2 x 2.2) mm^2 on target. This paper describes an adjustable PMQ beam line for an external ion beam. The novel compact design based on commercially available NdFeB magnets allows high flexibility for ion beam applications.Comment: published in JINST (4th Feb 2013

    Ionization signals from electrons and alpha-particles in mixtures of liquid Argon and Nitrogen - perspectives on protons for Gamma Resonant Nuclear Absorption applications

    Full text link
    In this paper we report on a detailed study of ionization signals produced by Compton electrons and alpha-particles in a Time Projection Chamber (TPC) flled with different mixtures of liquid Argon and Nitrogen. The measurements were carried out with Nitrogen concentrations up to 15% and a drift electric feld in the range 0-50 kV/cm. A prediction for proton ionization signals is made by means of interpolation. This study has been conducted in view of the possible use of liquid Ar-N2 TPCs for the detection of gamma-rays in the resonant band of the Nitrogen absorption spectrum, a promising technology for security and medical applications

    30 kV coaxial vacuum-tight feedthrough for operation at cryogenic temperatures

    Full text link
    In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage potentials into cryogenic liquids, without risk of surface discharges in the gas phase above the liquid level. The feedthrough is designed to be used in ionization detectors, based on liquefied noble gases, such as Argon or Xenon

    Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N

    Full text link
    The development of a mm-spatial-resolution, resonant-response detector based on a micrometric glass capillary array filled with liquid scintillator is described. This detector was developed for Gamma Resonance Absorption (GRA) in 14N. GRA is an automatic-decision radiographic screening technique that combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with very good sensitivity and specificity to nitrogenous explosives. Detailed simulation of the detector response to electrons and protons generated by the 9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a mixed gamma-ray and neutron source. Towards this, a prototype capillary detector was assembled, including the associated filling and readout systems. Simulations and experimental results indeed show that proton tracks are distinguishable from electron tracks at relevant energies, on the basis of a criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure

    A steerable UV laser system for the calibration of liquid argon time projection chambers

    Get PDF
    A number of liquid argon time projection chambers (LAr TPC's) are being build or are proposed for neutrino experiments on long- and short baseline beams. For these detectors a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL)

    On the Electric Breakdown in Liquid Argon at Centimeter Scale

    Get PDF
    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).Comment: Minor revision according to editor report. 17 pages, 15 figures, 2 tables. Turboencabulato

    First measurement of inclusive electron-neutrino and antineutrino charged current differential cross sections in charged lepton energy on argon in MicroBooNE

    Get PDF
    We present the first measurement of the single-differential νe+¯νe charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering angle over the full range. Data were collected using the MicroBooNE liquid argon time projection chamber located off axis from the Fermilab neutrinos at the main injector beam over an exposure of 2.0×1020 protons on target. The signal definition includes a 60 MeV threshold on the νe or ¯νe energy and a 120 MeV threshold on the electron or positron energy. The measured total and differential cross sections are found to be in agreement with the genie, nuwro, and gibuu neutrino generators

    A method to suppress dielectric breakdowns in liquid argon ionization detectors for cathode to ground distances of several millimeters

    Get PDF
    We present a method to reach electric field intensity as high as 400 kV/cm in liquid argon for cathode-ground distances of several millimeters. This can be achieved by suppressing field emission from the cathode, overcoming limitations that we reported earlier

    Search for an anomalous excess of charged-current quasielastic νe interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction

    Get PDF
    We present a measurement of the νe-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasielastic (CCQE) events. The topology of such signal events has a final state with one electron, one proton, and zero mesons (1e1p). Multiple novel techniques are employed to identify a 1e1p final state, including particle identification that use two methods of Deep-Learning-based image identification and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 νe-candidate events in the reconstructed neutrino energy range of 200–1200 MeV, while 29.0±1.9(sys)±5.4(stat) are predicted when using νμ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a νe signal in MicroBooNE. A Δχ2 test statistic, based on the combined Neyman–Pearson χ2 formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% (2σ) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% (2σ) confidence level
    • …
    corecore