1,155 research outputs found
Cosmological perturbations in a family of deformations of general relativity
We study linear cosmological perturbations in a previously introduced family
of deformations of general relativity characterized by the absence of new
degrees of freedom. The homogeneous and isotropic background in this class of
theories is unmodified and is described by the usual Friedmann equations. The
theory of cosmological perturbations is modified and the relevant deformation
parameter has the dimension of length. Gravitational perturbations of the
scalar type can be described by a certain relativistic potential related to the
matter perturbations just as in general relativity. A system of differential
equations describing the evolution of this potential and of the stress-energy
density perturbations is obtained. We find that the evolution of scalar
perturbations proceeds with a modified effective time-dependent speed of sound,
which, contrary to the case of general relativity, does not vanish even at the
matter-dominated stage. In a broad range of values of the length parameter
controlling the deformation, a specific transition from the regime of modified
gravity to the regime of general relativity in the evolution of scalar
perturbations takes place during the radiation domination. In this case, the
resulting power spectrum of perturbations in radiation and dark matter is
suppressed on the comoving spatial scales that enter the Hubble radius before
this transition. We estimate the bounds on the deformation parameter for which
this suppression does not lead to observable consequences. Evolution of scalar
perturbations at the inflationary stage is modified but very slightly and the
primordial spectrum generated during inflation is not noticeably different from
the one obtained in general relativity.Comment: 45 pages, version published in JCAP; minor changes, one section moved
to the appendi
Quantum Geometry and Thermal Radiation from Black Holes
A quantum mechanical description of black hole states proposed recently
within non-perturbative quantum gravity is used to study the emission and
absorption spectra of quantum black holes. We assume that the probability
distribution of states of the quantum black hole is given by the ``area''
canonical ensemble, in which the horizon area is used instead of energy, and
use Fermi's golden rule to find the line intensities. For a non-rotating black
hole, we study the absorption and emission of s-waves considering a special set
of emission lines. To find the line intensities we use an analogy between a
microscopic state of the black hole and a state of the gas of atoms.Comment: 19 pages, 4 figures, modified version to appear in Class. Quant. Gra
Black Hole Thermodynamics and Riemann Surfaces
We use the analytic continuation procedure proposed in our earlier works to
study the thermodynamics of black holes in 2+1 dimensions. A general black hole
in 2+1 dimensions has g handles hidden behind h horizons. The result of the
analytic continuation is a hyperbolic 3-manifold having the topology of a
handlebody. The boundary of this handlebody is a compact Riemann surface of
genus G=2g+h-1. Conformal moduli of this surface encode in a simple way the
physical characteristics of the black hole. The moduli space of black holes of
a given type (g,h) is then the Schottky space at genus G. The (logarithm of
the) thermodynamic partition function of the hole is the Kaehler potential for
the Weil-Peterson metric on the Schottky space. Bekenstein bound on the black
hole entropy leads us to conjecture a new strong bound on this Kaehler
potential.Comment: 17+1 pages, 9 figure
Spherically symmetric black holes in minimally modified self-dual gravity
We discuss spherically symmetric black holes in the modified self-dual theory
of gravity recently studied by Krasnov, obtained adding a Weyl-curvature
dependent `cosmological term' to the Plebanski lagrangian for general
relativity. This type of modified gravity admits two different types of
singularities: one is a true singularity for the theory where the fundamental
fields of the theory, as well as the (auxiliary) spacetime metric, become
singular, and the other one is a milder "non-metric singularity" where the
metric description of the spacetime breaks down but the fundamental fields
themselves are regular. We first generalise this modified self-dual gravity to
include Maxwell's field and then study basic features of spherically symmetric,
charged black holes, with particular focus on whether these two types of
singularities are hidden or naked. We restrict our attention to minimal forms
of the modification, and find that the theory exhibits `screening' effects of
the electric charge (or `anti-screening', depending upon the sign of the
modification term), in the sense that it leads to the possibility of charging
the black hole more (or less) than it would be possible in general relativity
without exposing a naked singularity. We also find that for any (even
arbitrarily large) value of charge, true singularities of the theory appear to
be either achronal (non-timelike) covered by the hypersurface of a harmless
non-metric singularity, or simply hidden inside at least one Killing horizon.Comment: 42 pages, many colour figures. v2: discussion of the conformal
ambiguity improved, references added. v3: amended to match published versio
Loop Quantization of Maxwell Theory and Electric Charge Quantization
We consider the loop quantization of Maxwell theory. A quantization of this
type leads to a quantum theory in which the fundamental excitations are
loop-like rather than particle-like. Each such loop plays the role of a
quantized Faraday's line of electric flux. We find that the quantization
depends on an arbitrary choice of a parameter e that carries the dimension of
electric charge. For each value of e an electric charge that can be contained
inside a bounded spatial region is automatically quantized in units of
hbar/4*pi*e. The requirement of consistency with the quantization of electric
charge observed in our Universe fixes a value of the, so far arbitrary,
parameter e of the theory. Finally, we compare the ambiguity in the choice of
parameter e with the beta-ambiguity that, as pointed by Immirzi, arises in the
loop quantization of general relativity, and comment on a possible way this
ambiguity can be fixed.Comment: 7 pages, Revtex, no figures, typos corrected and one reference adde
Deformations of GR and BH thermodynamics
In four space–time dimensions General Relativity can be non-trivially deformed. Deformed theories continue to describe two propagating degrees of freedom, as GR. We study Euclidean black hole thermodynamics of these deformations. We use the recently developed formulation that works with connections as well as certain matrices M of auxiliary fields. We show that the black hole entropy is given by one quarter of the horizon area as measured by the Lie algebra valued two-form MF, where F is the connection curvature. This coincides with the horizon area as measured by the metric only for the case of General Relativity
Analytic Continuation for Asymptotically AdS 3D Gravity
We have previously proposed that asymptotically AdS 3D wormholes and black
holes can be analytically continued to the Euclidean signature. The analytic
continuation procedure was described for non-rotating spacetimes, for which a
plane t=0 of time symmetry exists. The resulting Euclidean manifolds turned out
to be handlebodies whose boundary is the Schottky double of the geometry of the
t=0 plane. In the present paper we generalize this analytic continuation map to
the case of rotating wormholes. The Euclidean manifolds we obtain are quotients
of the hyperbolic space by a certain quasi-Fuchsian group. The group is the
Fenchel-Nielsen deformation of the group of the non-rotating spacetime. The
angular velocity of an asymptotic region is shown to be related to the
Fenchel-Nielsen twist. This solves the problem of classification of rotating
black holes and wormholes in 2+1 dimensions: the spacetimes are parametrized by
the moduli of the boundary of the corresponding Euclidean spaces. We also
comment on the thermodynamics of the wormhole spacetimes.Comment: 28 pages, 14 figure
Lambda<0 Quantum Gravity in 2+1 Dimensions II: Black Hole Creation by Point Particles
Using the recently proposed formalism for Lambda<0 quantum gravity in 2+1
dimensions we study the process of black hole production in a collision of two
point particles. The creation probability for a BH with a simplest topology
inside the horizon is given by the Liouville theory 4-point function projected
on an intermediate state. We analyze in detail the semi-classical limit of
small AdS curvatures, in which the probability is dominated by the exponential
of the classical Liouville action. The probability is found to be exponentially
small. We then argue that the total probability of creating a horizon given by
the sum of probabilities of all possible internal topologies is of order unity,
so that there is no exponential suppression of the total production rate.Comment: v1: 30+1 pages, figures, v2: 34+1 pages, agruments straightened ou
- …