7,290 research outputs found
Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis
By intrasplenic immunization we raised a rat mAb (mAb V1q; IgG2a, kappa) with a potent neutralizing activity against natural mouse TNF (1 microgram/ml mAb V1q/100 U/ml TNF). mAb V1q was used to study the role of endogenous TNF in experimental peritonitis induced by sublethal cecal ligation and puncture. mAb V1q persisted for over 5 days in the serum of mice injected with 100 micrograms of the antibody and, therefore, proved useful for in vivo experiments. As little as 20 micrograms mAb V1q/mouse prevented lethal shock of the animals by 400 micrograms LPS/mouse. In sublethal cecal ligation and puncture i.p. injection of mAb V1q directly and up to 8 h after induction of experimental peritonitis lead to death of the animals within 1 to 3 days. The lethal effect of mAb V1q was compensated by injection of recombinant mouse TNF. Similar mAb V1q effects as in immunocompetent mice were shown in severe combined immune deficiency mice deficient of mature functional B and T cells. Taken together, these data suggest that during the early phase of peritonitis endogenous TNF may stimulate nonlymphoid cells such as granulocytes, macrophages, platelets, and fibroblasts to ingest bacteria and to localize inflammation, respectively. These beneficial effects of TNF may determine survival. Thus, our data may have implications for the therapeutic management of a beginning peritonitis
Induction of IL 2 receptor expression and cytotoxicity of thymocytes by stimulation with TCF1
We investigated the role of T cell cytotoxicity inducing factor 1 (TCF1) in the induction of a cytotoxic T cell response. We found that help-deficient thymocyte cultures supplied with saturating amounts of purified IL 2 did not develop CTL in a 5-day culture. The expression of cytotoxicity was dependent on the addition of TCF1 derived from the T cell hybridoma K15. TCF1 also induced proliferation of thymocytes in the presence of IL 2. Only the PNA- thymocyte subpopulation responded to TCF1 with proliferation and cytotoxicity in the presence of IL 2. The monokine IL 1 also induced proliferation in this subpopulation but failed to induce cytotoxicity. IL 1 was further distinguished from TCF1 by inhibition of IL 1-induced but not TCF1-induced proliferation by anti-IL 1 antibodies. In addition, using anti-IL 2 receptor antibodies (AMT 13), we showed that TCF1 in the presence of IL 2 substantially increased IL 2 receptor expression in thymocytes. IL 1 had the same effect on induction of IL 2 receptor expression as TCF1. Because some effects of IL 1 and TCF1 are distinct and some overlap, we discuss whether IL 1 and TCF1 induce different subsets of PNA- thymocytes
Determination of the angle gamma using B -> D* V modes
We propose a method to determine the angle , using the
() modes. The is considered to decay to .
An interference of the and amplitudes is
achieved by looking at a common final state , in the subsequent decays of
. A detailed analysis of the angular distribution, allows
determination, not only of and , but also all the hadronic
amplitudes and strong phases involved. No prior knowledge of doubly Cabibbo
suppressed branching ratios of are required. Large CP violating asymmetries
( for ) are possible if is doubly
Cabbibo suppressed, while is Cabbibo allowed, for decays of
or .Comment: 12 Pages Revte
ILC Beam Energy Measurement by means of Laser Compton Backscattering
A novel, non-invasive method of measuring the beam energy at the
International Linear Collider is proposed. Laser light collides head-on with
beam particles and either the energy of the Compton scattered electrons near
the kinematic end-point is measured or the positions of the Compton
backscattered -rays, the edge electrons and the unscattered beam
particles are recorded. A compact layout for the Compton spectrometer is
suggested. It consists of a bending magnet and position sensitive detectors
operating in a large radiation environment. Several options for high spatial
resolution detectors are discussed. Simulation studies support the use of an
infrared or green laser and quartz fiber detectors to monitor the backscattered
photons and edge electrons. Employing a cavity monitor, the beam particle
position downstream of the magnet can be recorded with submicrometer precision.
Such a scheme provides a feasible and promising method to access the incident
beam energy with precisions of or better on a bunch-to-bunch basis
while the electron and positron beams are in collision.Comment: 47 pages, 26 figures, version as accepted by Nucl. Instr. Meth. A
after improvement
On the distortion of twin building lattices
We show that twin building lattices are undistorted in their ambient group;
equivalently, the orbit map of the lattice to the product of the associated
twin buildings is a quasi-isometric embedding. As a consequence, we provide an
estimate of the quasi-flat rank of these lattices, which implies that there are
infinitely many quasi-isometry classes of finitely presented simple groups. In
an appendix, we describe how non-distortion of lattices is related to the
integrability of the structural cocycle
Dynamics within the CD95 death-inducing signaling complex decide life and death of cells
CD95-mediated apoptotic and NF-κB signaling were described by a simple kinetic model. We used a model reduction technique to reduce the number of reactions from 92 to 23 while maintaining a good model fit.p43-FLIP, which is generated at the CD95 DISC by procaspase-8 cleavage, was found to be the link between the CD95 DISC and the NF-κB pathway. P43-FLIP interacts with the IKK complex and leads to its activation.The CD95 DISC complex acts as a signal processor that diverges signals into the apoptotic and NF-κB pathways depending on the amounts of specific DISC proteins.Life/death decisions in CD95 signaling are determined by c-FLIPL and procaspase-8 in a non-linear way
Engineering a C-Phase quantum gate: optical design and experimental realization
A two qubit quantum gate, namely the C-Phase, has been realized by exploiting
the longitudinal momentum (i.e. the optical path) degree of freedom of a single
photon. The experimental setup used to engineer this quantum gate represents an
advanced version of the high stability closed-loop interferometric setup
adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some
experimental results, dealing with the characterization of multipartite
entanglement of the Phased Dicke states are also discussed in detail.Comment: accepted for publication on EPJ
Rational design of biosafe crop resistance to a range of nematodes using RNA interference
Double stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal Alpha Subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison to Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3 fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9 fold and 4 fold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7 and 2 fold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9 and 5.6 fold. There was no detectable RNAi effect on non-target nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of non-protein defences to provide broad resistance to pests and pathogens of crops
Optimizing Current Collector Interfaces for Efficient “Anode-Free” Lithium Metal Batteries
Current lithium (Li)-metal anodes are not sustainable for the mass production of future energy storage devices because they are inherently unsafe, expensive, and environmentally unfriendly. The anode-free concept, in which a current collector (CC) is directly used as the host to plate Li-metal, by using only the Li content coming from the positive electrode, could unlock the development of highly energy-dense and low-cost rechargeable batteries. Unfortunately, dead Li-metal forms during cycling, leading to a progressive and fast capacity loss. Therefore, the optimization of the CC/electrolyte interface and modifications of CC designs are key to producing highly efficient anode-free batteries with liquid and solid-state electrolytes. Lithiophilicity and electronic conductivity must be tuned to optimize the plating process of Li-metal. This review summarizes the recent progress and key findings in the CC design (e.g. 3D structures) and its interaction with electrolytes
- …