1,497 research outputs found
Storage of classical information in quantum spins
Digital magnetic recording is based on the storage of a bit of information in
the orientation of a magnetic system with two stable ground states. Here we
address two fundamental problems that arise when this is done on a quantized
spin: quantum spin tunneling and back-action of the readout process. We show
that fundamental differences exist between integer and semi-integer spins when
it comes to both, read and record classical information in a quantized spin.
Our findings imply fundamental limits to the miniaturization of magnetic bits
and are relevant to recent experiments where spin polarized scanning tunneling
microscope reads and records a classical bit in the spin orientation of a
single magnetic atom
Low-Temperature Properties of Two-Dimensional Ideal Ferromagnets
The manifestation of the spin-wave interaction in the low-temperature series
of the partition function has been investigated extensively over more than
seven decades in the case of the three-dimensional ferromagnet. Surprisingly,
the same problem regarding ferromagnets in two spatial dimensions, to the best
of our knowledge, has never been addressed in a systematic way so far. In the
present paper the low-temperature properties of two-dimensional ideal
ferromagnets are analyzed within the model-independent method of effective
Lagrangians. The low-temperature expansion of the partition function is
evaluated up to two-loop order and the general structure of this series is
discussed, including the effect of a weak external magnetic field. Our results
apply to two-dimensional ideal ferromagnets which exhibit a spontaneously
broken spin rotation symmetry O(3) O(2) and are defined on a square,
honeycomb, triangular or Kagom\'e lattice. Remarkably, the spin-wave
interaction only sets in at three-loop order. In particular, there is no
interaction term of order in the low-temperature series for the free
energy density. This is the analog of the statement that, in the case of
three-dimensional ferromagnets, there is no interaction term of order in
the free energy density. We also provide a careful discussion of the
implications of the Mermin-Wagner theorem in the present context and thereby
put our low-temperature expansions on safe grounds.Comment: 24 pages, 3 figure
Driven classical diffusion with strong correlated disorder
We analyze one-dimensional motion of an overdamped classical particle in the
presence of external disorder potential and an arbitrary driving force F. In
thermodynamical limit the effective force-dependent mobility mu(F) is
self-averaging, although the required system size may be exponentially large
for strong disorder. We calculate the mobility mu(F) exactly, generalizing the
known results in linear response (weak driving force) and the perturbation
theory in powers of the disorder amplitude. For a strong disorder potential
with power-law correlations we identify a non-linear regime with a prominent
power-law dependence of the logarithm of mu(F) on the driving force.Comment: 4 pages, 2 figures include
A proof of the Kramers degeneracy of transmission eigenvalues from antisymmetry of the scattering matrix
In time reversal symmetric systems with half integral spins (or more
concretely, systems with an antiunitary symmetry that squares to -1 and
commutes with the Hamiltonian) the transmission eigenvalues of the scattering
matrix come in pairs. We present a proof of this fact that is valid both for
even and odd number of modes and relies solely on the antisymmetry of the
scattering matrix imposed by time reversal symmetry.Comment: 2 page
Systematic computation of crystal field multiplets for X-ray core spectroscopies
We present a new approach to computing multiplets for core spectroscopies,
whereby the crystal field is constructed explicitly from the positions and
charges of surrounding atoms. The simplicity of the input allows the
consideration of crystal fields of any symmetry, and in particular facilitates
the study of spectroscopic effects arising from low symmetry environments. The
interplay between polarization directions and crystal field can also be
conveniently investigated. The determination of the multiplets proceeds from a
Dirac density functional atomic calculation, followed by the exact
diagonalization of the Coulomb, spin-orbit and crystal field interactions for
the electrons in the open shells. The eigenstates are then used to simulate
X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering spectra.
In examples ranging from high symmetry down to low symmetry environment,
comparisons with experiments are done with unadjusted model parameters as well
as with semi-empirically optimized ones. Furthermore, predictions for the RIXS
of low-temperature MnO and for Dy in a molecular complex are proposed.Comment: Accepted for publication in Phys. Rev.
Insight into Resonant Activation in Discrete Systems
The resonant activation phenomenon (RAP) in a discrete system is studied
using the master equation formalism. We show that the RAP corresponds to a
non-monotonic behavior of the frequency dependent first passage time
probability density function (pdf). An analytical expression for the resonant
frequency is introduced, which, together with numerical results, helps
understand the RAP behavior in the space spanned by the transition rates for
the case of reflecting and absorbing boundary conditions. The limited range of
system parameters for which the RAP occurs is discussed. We show that a minimum
and a maximum in the mean first passage time (MFPT) can be obtained when both
boundaries are absorbing. Relationships to some biological systems are
suggested.Comment: 5 pages, 5 figures, Phys. Rev. E., in pres
Significant g-factor values of a two-electron ground state in quantum dots with spin-orbit coupling
The magnetization of semiconductor quantum dots in the presence of spin-orbit
coupling and interactions is investigated numerically. When the dot is occupied
by two electrons we find that a level crossing between the two lowest many-body
eigenstates may occur as a function of the spin-orbit coupling strength. This
level crossing is accompanied by a non-vanishing magnetization of the
ground-state. Using first order perturbation theory as well as exact numerical
diagonalization of small clusters we show that the tendency of interactions to
cause Stoner-like instability is enhanced by the SO coupling. The resulting
g-factor can have a significant value, and thus may influence g-factor
measurements. Finally we propose an experimental method by which the predicted
phenomenon can be observed.Comment: 7+ pages, 7 figure
Teaching and learning problem solving in science. Part II: Learning problem solving in a thermodynamics course
This paper examines important new aspects and results related to an experimental new course
Kramers-Kronig, Bode, and the meaning of zero
The implications of causality, as captured by the Kramers-Kronig relations
between the real and imaginary parts of a linear response function, are
familiar parts of the physics curriculum. In 1937, Bode derived a similar
relation between the magnitude (response gain) and phase. Although the
Kramers-Kronig relations are an equality, Bode's relation is effectively an
inequality. This perhaps-surprising difference is explained using elementary
examples and ultimately traces back to delays in the flow of information within
the system formed by the physical object and measurement apparatus.Comment: 8 pages; American Journal of Physics, to appea
- …
