22 research outputs found

    Non-conventional phase attractors and repellers in weakly coupled autogenerators with hard excitation

    Full text link
    In our earlier studies, we found the effect of non-conventional synchronization, which is a specific type of nonlinear stable beating in the system of two weakly coupled autogenerators with hard excitation given by generalized van der Pol-Duffing characteristics. The corresponding synchronized dynamics are due to a new type of attractor in a reduced phase space of the system. In the present work, we show that, as the strength of nonlinear stiffness and dissipation are changing, the phase portrait undergoes a complicated evolution leading to a quite unexpected appearance of difficult to detect repellers separating a stable limit cycle and equilibrium points in the phase plane. In terms of the original coordinates, the limit cycle associates with nonlinear beatings while the stationary points correspond to the stationary synchronous dynamics similar to the so-called nonlinear local modes

    Temperature-induced reversal effects of kink dynamics in carbon nanotube on flat substrate

    Full text link
    Carbon nanotubes are nano-objects with quite anisotropic properties, for example the mechanical properties in longitudinal and radial directions differ significantly. This feature of the carbon nanotubes yields many interesting phenomena investigated in last decades. One of them is the ability to form both hollow and collapsed states if the radius of the nanotube is large enough. The transitions between the two states have been also reported. In our study we present single-walled carbon nanotube interacting with a plane substrate and characterize the energy of interaction with the substrate using effective Lennard-Jones-type potential. We show energy of the homogeneous open and collapsed states depending on the radius of the carbon nanotube and report on the bi-stability in some range of the nanotube diameters. Using the molecular-dynamical simulations we look at the evolution of the initial half-opened, half-collapsed state and demonstrate that the transition area from one state to another is spatially localized having features of topological soliton (kink or anti-kink). We show that the value and the direction of the kink propagation speed depend significantly on the nanotube diameter as well as on the temperature of the system. We also discuss the mechanism of the process using a simplified model with asymmetric double-well potential and show the entropic nature of the transition.Comment: 9 pages, 8 figure

    Genomic analysis of Caldithrix abyssi, the thermophilic anaerobic bacterium of the novel bacterial phylum Calditrichaeota

    Get PDF
    The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family, while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. OS and MSG were supported by the Russian Science Foundation (RSF, grant 14-24-00155). EB-O and SG were supported by the RSF grant 14-24-00165. IK, NC, AL, and MM were supported by the Russian Foundation for Basic Research grant 14-04-00503.http://www.frontiersin.orgam2017Biochemistr

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study