3 research outputs found

    Identifying Dynamic Structural Changes of Active Sites in Pt–Ni Bimetallic Catalysts Using Multimodal Approaches

    No full text
    Alloy nanoparticle catalysts are known to afford unique activities that can differ markedly from their parent metals, but there remains a generally limited understanding of the nature of their atomic (and likely dynamic) structures as exist in heterogeneously supported forms under reaction conditions. Notably unclear is the nature of their active sites and the details of the varying oxidation states and atomic arrangements of the catalytic components during chemical reactions. In this work, we describe multimodal methods that provide a quantitative characterization of the complex heterogeneity present in the chemical and electronic speciations of Pt–Ni bimetallic catalysts supported on mesoporous silica during the reverse water gas shift reaction. The analytical protocols involved a correlated use of in situ X-ray Absorption Spectroscopy (XAS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), complimented by ex-situ aberration corrected Scanning Transmission Electron Microscopy (STEM). The data reveal that complex reactions occur between the metals and support in this system under operando conditions. These reactions, and the specific impacts of strong metal–silica bonding interactions, prevent the formation of alloy phases containing Ni–Ni bonds. This feature of structure provides high activity and selectivity for the reduction of CO<sub>2</sub> to carbon monoxide without significant competitive levels of methanation. We show how these chemistries evolve to the active state of the catalyst: bimetallic nanoparticles possessing an intermetallic structure (the active phase) that are conjoined with Ni-rich, metal-silicate species

    Mutagenic analysis of the intracellular portals of the human 5-HT3A receptor

    Get PDF
    Structural models of Cys-loop receptors based on homology with the Torpedo marmorata nicotinic acetylcholine receptor infer the existence of cytoplasmic portals within the conduction pathway framed by helical amphipathic regions (termed membrane-associated (MA) helices) of adjacent intracellular M3-M4 loops. Consistent with these models, two arginine residues (Arg(436) and Arg(440)) within the MA helix of 5-hydroxytryptamine type 3A (5-HT(3)A) receptors act singularly as rate-limiting determinants of single-channel conductance (γ). However, there is little conservation in primary amino acid sequences across the cytoplasmic loops of Cys-loop receptors, limiting confidence in the fidelity of this particular aspect of the 5-HT(3)A receptor model. We probed the majority of residues within the MA helix of the human 5-HT(3)A subunit using alanine- and arginine-scanning mutagenesis and the substituted cysteine accessibility method to determine their relative influences upon γ. Numerous residues, prominently those at the 435, 436, 439, and 440 positions, were found to markedly influence γ. This approach yielded a functional map of the 5-HT(3)A receptor portals, which agrees well with the homology model
    corecore