2 research outputs found
Automatic Translation of Hate Speech to Non-hate Speech in Social Media Texts
In this paper, we investigate the issue of hate speech by presenting a novel
task of translating hate speech into non-hate speech text while preserving its
meaning. As a case study, we use Spanish texts. We provide a dataset and
several baselines as a starting point for further research in the task. We
evaluated our baseline results using multiple metrics, including BLEU scores.
The aim of this study is to contribute to the development of more effective
methods for reducing the spread of hate speech in online communities
Automatic detection of semantic primitives using optimization based on genetic algorithm
In this article, we propose a method for the automatic retrieval of a set of semantic primitive words from an explanatory dictionary and a novel evaluation procedure for the obtained set of primitives. The approach is based on the representation of the dictionary as a directed graph with a single-objective constrained optimization problem via a genetic algorithm with the PageRank scoring model. The problem is defined as a subset selection. The algorithm is fit to search for the sets of words that should fulfil several requirements: the cardinality of the set should not exceed empirically selected limits and the PageRank word importance score is minimized with cycle prevention thresholding. In the experiments, we used the WordNet dictionary for English. The proposed method is an improvement over the previous state-of-the-art solutions