10 research outputs found

    Kaluza-Klein Towers in the Early Universe: Phase Transitions, Relic Abundances, and Applications to Axion Cosmology

    Full text link
    We study the early-universe cosmology of a Kaluza-Klein (KK) tower of scalar fields in the presence of a mass-generating phase transition, focusing on the time-development of the total tower energy density (or relic abundance) as well as its distribution across the different KK modes. We find that both of these features are extremely sensitive to the details of the phase transition and can behave in a variety of ways significant for late-time cosmology. In particular, we find that the interplay between the temporal properties of the phase transition and the mixing it generates are responsible for both enhancements and suppressions in the late-time abundances, sometimes by many orders of magnitude. We map out the complete model parameter space and determine where traditional analytical approximations are valid and where they fail. In the latter cases we also provide new analytical approximations which successfully model our results. Finally, we apply this machinery to the example of an axion-like field in the bulk, mapping these phenomena over an enlarged axion parameter space that extends beyond those accessible to standard treatments. An important by-product of our analysis is the development of an alternate "UV-based" effective truncation of KK theories which has a number of interesting theoretical properties that distinguish it from the more traditional "IR-based" truncation typically used in the extra-dimension literature.Comment: 30 pages, LaTeX, 18 figures. Replaced to match published versio

    Deformation of Axion Potentials: Implications for Spontaneous Baryogenesis, Dark Matter, and Isocurvature Perturbations

    Get PDF
    We show that both the baryon asymmetry of the universe and dark matter (DM) can be accounted for by the dynamics of a single axion-like field. In this scenario, the observed baryon asymmetry is produced through spontaneous baryogenesis---driven by the early evolution of the axion---while its late-time coherent oscillations explain the observed DM abundance. Typically, spontaneous baryogenesis via axions is only successful in regions of parameter space where the axion is relatively heavy, rendering it highly unstable and unfit as a dark matter candidate. However, we show that a field-dependent wavefunction renormalization can arise which effectively "deforms" the axion potential, allowing for efficient generation of baryon asymmetry while maintaining a light and stable axion. Meanwhile, such deformations of the potential induce non-trivial axion dynamics, including a tracking behavior during its intermediate phase of evolution. This attractor-like dynamics dramatically reduces the sensitivity of the axion relic abundance to initial conditions and naturally suppresses DM isocurvature perturbations. Finally, we construct an explicit model realization, using a continuum-clockwork axion, and survey the details of its phenomenological viability

    Deciphering the Archaeological Record: Cosmological Imprints of Non-Minimal Dark Sectors

    Full text link
    Many proposals for physics beyond the Standard Model give rise to a dark sector containing many degrees of freedom. In this work, we explore the cosmological implications of the non-trivial dynamics which may arise within such dark sectors, focusing on decay processes which take place entirely among the dark constituents. First, we demonstrate that such decays can leave dramatic imprints on the resulting dark-matter phase-space distribution. In particular, this distribution need not be thermal -- it can even be multi-modal, exhibiting a non-trivial pattern of peaks and troughs as a function of momentum. We then proceed to show how these features can induce modifications to the matter power spectrum. Finally, we assess the extent to which one can approach the archaeological "inverse" problem of deciphering the properties of an underlying dark sector from the matter power spectrum. Indeed, one of the main results of this paper is a remarkably simple conjectured analytic expression which permits the reconstruction of many of the important features of the dark-matter phase-space distribution directly from the matter power spectrum. Our results therefore provide an interesting toolbox of methods for learning about, and potentially constraining, the features of non-minimal dark sectors and their dynamics in the early universe.Comment: 55 pages, LaTeX, 21 figures, 4 table

    Enlarging the space of viable inflation models: A slingshot mechanism

    Get PDF
    The viability of a given model for inflation is determined not only by the form of the inflaton potential, but also by the initial inflaton field configuration. In many models, field configurations which are otherwise well-motivated nevertheless fail to induce inflation, or fail to produce an inflationary epoch of duration sufficient to solve the horizon and flatness problems. In this paper, we propose a mechanism which enables inflation to occur even with such initial conditions. Our mechanism involves multiple scalar fields which experience a time-dependent mixing. This in turn leads to a “re-overdamping” phase as well as a parametric resonance which together “slingshot” the inflaton field from regions of parameter space that do not induce inflation to regions that do. Our mechanism is flexible, dynamical, and capable of yielding an inflationary epoch of sufficiently long duration. This slingshot mechanism can therefore be utilized in a variety of settings and thereby enlarge the space of potentially viable inflation models.U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-FG02-13ER41976 (DE-SC0009913)]; U.S. National Science Foundation through its employee IR/D program; Institute for Basic Science in Korea [IBS-R018-D1]; National Science FoundationNational Science Foundation (NSF) [PHY-1607611, PHY-1720430]Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A new approach to the cosmological moduli problem

    No full text
    A generic byproduct of many theories beyond the Standard Model is the appearance of light scalar fields known as moduli. These moduli should be copiously produced in the early universe but have dangerously long lifetimes, leading to their excessive domination of the late-time energy density - an issue known as the "cosmological moduli problem". In this talk, we discuss a number of new effects which have direct relevance for the cosmological moduli problem and which, depending on circumstances, can either unexpectedly amerliorate it or worsen it, often by many orders of magnitude. As described more fully in Ref. [1], these effects arise in theories containing multiple moduli which mix amongst themselves in the presence of a mass-generating phase transition.12 Month Embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Massless preheating and electroweak vacuum metastability

    No full text
    Published by the American Physical SocietyCurrent measurements of Standard Model parameters suggest that the electroweak vacuum is metastable. This metastability has important cosmological implications, because large fluctuations in the Higgs field could trigger vacuum decay in the early Universe. For the false vacuum to survive, interactions which stabilize the Higgs during inflation—e.g., inflaton-Higgs interactions or nonminimal couplings to gravity—are typically necessary. However, the postinflationary preheating dynamics of these same interactions could also trigger vacuum decay, thereby recreating the problem we sought to avoid. This dynamics is often assumed catastrophic for models exhibiting scale invariance, since these generically allow for unimpeded growth of fluctuations. In this paper, we examine the dynamics of such “massless preheating” scenarios and show that the competing threats to metastability can nonetheless be balanced to ensure viability. We find that fully accounting for both the backreaction from particle production and the effects of perturbative decays reveals a large number of disjoint “islands of (meta)stability” over the parameter space of couplings. Ultimately, the interplay among Higgs-stabilizing interactions plays a significant role, leading to a sequence of dynamical phases that effectively extend the metastable regions to large Higgs-curvature couplings.11Nsciescopu

    Predictors of Change in Physical Function in Older Adults in Response to Long-Term, Structured Physical Activity: The LIFE Study

    No full text
    corecore