272 research outputs found

    Alzheimer's disease pathology and the unfolded protein response : Prospective pathways and therapeutic targets

    Get PDF
    The authors would like to thank Alzheimer's Research UK (Grant refs: ARUK-PPG2014A-21 and ARUK-NSG2015-1 to BP and DK) who have provided support for relevant projects leading to this review.Peer reviewedPostprin

    Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline

    Get PDF
    Acknowledgments We would like to gratefully acknowledge all donors and their families for the tissue provided for this study. Human tissue samples were supplied by the Brains for Dementia Research programme, jointly funded by Alzheimer’s Research UK, the Alzheimer’s Society and the Medical Research Council, and sourced from the MRC London Neurodegenerative Diseases Brain Bank, the Manchester Brain Bank, the South West Dementia Brain Bank (SWDBB), the Newcastle Brain Tissue Resource and the Oxford Brain Bank. The Newcastle Brain Tissue Resource and Oxford Brain Bank are also supported by the National Institute for Health Research (NIHR) Units. The South West Dementia Brain Bank (SWDBB) receives additional support from BRACE (Bristol Research into Alzheimer’s and Care of the Elderly). Alz-50, CP13, MC-1 and PHF-1 antibodies were gifted from Dr. Peter Davies and brain lystates from BACE1−/−mice were obtained from Prof Mike Ashford. The work presented here was funded by Alzheimer’s Research UK (Grant refs: ARUKPPG2014A-21 and ARUK-NSG2015-1 to BP and DK and NIH/NIA grants NIH/NINDS R01 NS082730 and R01 AG044372 to NK)Peer reviewedPublisher PD

    Distinctive temporal profiles of detergent-soluble and -insoluble tau and Aβ species in human Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) pathology relevant proteins tau and beta-amyloid (Aβ) exist as an array of post-translationally modified and conformationally altered species with varying abundance, solubility and toxicity. Insoluble neurofibrillary tau tangles and Aβ plaques are end-stage AD hallmarks, yet may carry less disease significance compared to soluble species. At present, it is unclear how soluble and insoluble tau and Aβ relate to each other as well as to disease progression. Here, detergent soluble and insoluble fractions generated from post-mortem human temporal lobe samples (Brodmann area 21) were probed for tau and Aβ markers in immuno-dot assays. Measures were quantified according to diagnosis (AD cf. Non-AD), neuropathological severity, and correlated with disease progression (Braak stages). All markers were elevated within AD cases cf. non-AD controls (p &lt; 0.05) independent of solubility. However, when considered according to neuropathological severity, phospho-tau (detected via CP13 and AT8 antibodies) was elevated early within the soluble fraction (p &lt; 0.05 intermediate cf. low severity) and emerged only later within the insoluble fraction (p &lt; 0.05 high cf. low severity). In contrast, PHF1 phospho-tau, TOC1 reactive tau oligomers and amyloid markers rose within the two fractions simultaneously. Independent of solubility, cognitive correlations were observed for tau makers and for fibrillary amyloid (OC), however only soluble total Aβ was significantly correlated with intellectual impairment. Following the exclusion of end-stage cases, only soluble total Aβ remained correlated with cognition. The data indicate differential rates of protein aggregation during AD progression and confirm the disease relevance of early emerging soluble Aβ species.</p

    Decreased specific star formation rates in AGN host galaxies

    Get PDF
    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itsel

    Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline

    Get PDF
    Post-mortem investigations of human Alzheimer’s disease (AD) have largely failed to provide unequivocal evidence in support of the original amyloid cascade hypothesis, which postulated deposition of β-amyloid (Aβ) aggregates to be the cause of a demented state as well as inductive to tau neurofibrillary tangles (NFTs). Conflicting evidence suggests, however, that Aβ plaques and NFTs, albeit to a lesser extent, are present in a substantial subset of non-demented individuals. Hence, a range of soluble tau and Aβ species has more recently been implicated as the disease-relevant toxic entities. Despite the incorporation of soluble proteins into a revised amyloid cascade hypothesis, a detailed characterization of these species in the context of human AD onset, progression and cognitive decline has been lacking. Here, lateral temporal lobe samples (Brodmann area 21) of 46 human cases were profiled via tau and Aβ Western blot and native state dot blot protocols. Elevations in phospho-tau (antibodies: CP13, AT8 and PHF-1), pathological tau conformations (MC-1) and oligomeric tau (TOC1) agreed with medical diagnosis (non-AD cf. AD) and Braak stage classification (low, intermediate and high), alongside elevations in soluble Aβ species (MOAB-2 and pyro-glu Aβ) and a decline in levels of the amyloid precursor protein. Strong correlations were observed between individual Braak stages and multiple cognitive measures with all tau markers as well as total soluble Aβ. In contrast to previous reports, SDS-stable Aβ oligomers (*56) were not found to be reliable for all classifications and appeared likely to be a technical artefact. Critically, the robust predictive value of total soluble Aβ was dependent on native state quantification. Elevations in tau and Aβ within soluble fractions (Braak stage 2–3 cf. 0) were evident earlier than previously established in fibril-focused disease progression scales. Together, these data provide strong evidence that soluble forms of tau and Aβ co-localise early in AD and are closely linked to disease progression and cognitive decline.</p

    Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline

    Get PDF
    Post-mortem investigations of human Alzheimer’s disease (AD) have largely failed to provide unequivocal evidence in support of the original amyloid cascade hypothesis, which postulated deposition of β-amyloid (Aβ) aggregates to be the cause of a demented state as well as inductive to tau neurofibrillary tangles (NFTs). Conflicting evidence suggests, however, that Aβ plaques and NFTs, albeit to a lesser extent, are present in a substantial subset of non-demented individuals. Hence, a range of soluble tau and Aβ species has more recently been implicated as the disease-relevant toxic entities. Despite the incorporation of soluble proteins into a revised amyloid cascade hypothesis, a detailed characterization of these species in the context of human AD onset, progression and cognitive decline has been lacking. Here, lateral temporal lobe samples (Brodmann area 21) of 46 human cases were profiled via tau and Aβ Western blot and native state dot blot protocols. Elevations in phospho-tau (antibodies: CP13, AT8 and PHF-1), pathological tau conformations (MC-1) and oligomeric tau (TOC1) agreed with medical diagnosis (non-AD cf. AD) and Braak stage classification (low, intermediate and high), alongside elevations in soluble Aβ species (MOAB-2 and pyro-glu Aβ) and a decline in levels of the amyloid precursor protein. Strong correlations were observed between individual Braak stages and multiple cognitive measures with all tau markers as well as total soluble Aβ. In contrast to previous reports, SDS-stable Aβ oligomers (*56) were not found to be reliable for all classifications and appeared likely to be a technical artefact. Critically, the robust predictive value of total soluble Aβ was dependent on native state quantification. Elevations in tau and Aβ within soluble fractions (Braak stage 2–3 cf. 0) were evident earlier than previously established in fibril-focused disease progression scales. Together, these data provide strong evidence that soluble forms of tau and Aβ co-localise early in AD and are closely linked to disease progression and cognitive decline.</p

    Synaptic Loss, ER Stress and Neuro-inflammation Emerge Late in the Lateral Temporal Cortex and Associate with Progressive Tau Pathology in Alzheimer’s Disease

    Get PDF
    Acknowledgements We would like to deeply thank all donors and their families for the tissue provided for this study. Human tissue samples were supplied by the Brains for Dementia Research programme, jointly funded by Alzheimer’s Research UK, the Alzheimer’s Society and the Medical Research Council, and sourced from the MRC London Neurodegenerative Diseases Brain Bank, the Manchester Brain Bank, the South West Dementia Brain Bank (SWDBB), the Newcastle Brain Tissue Resource and the Oxford Brain Bank. The Newcastle Brain Tissue Resource and Oxford Brain Bank are also supported by the National Institute for Health Research (NIHR) Units. The South West Dementia Brain Bank (SWDBB) receives additional support from BRACE (Bristol Research into Alzheimer’s and Care of the Elderly). Use of human tissue for this work was approved by Brains for Dementia Research from London – City and East NRES committee 08/H0704/128+5. The work presented here was funded by Alzheimer’s Research UK (Grant refs: ARUK-PPG2014A-21, ARUK-NSG2015-1, ARUK-NCG2017A-3 awarded to DK and BP). HB was supported by an Alzheimer’s Society Doctoral Training Centre grant (grant ref: 228) to BP. MK’s participation in the project was funded by ARUK Scotland Network pump priming award to DK and BP. Antibodies CP13 and PHF1 were generously provided by Prof. Peter Davies. TOC1 antibodies were a gift from Nicholas Kanaan at Michigan State University (originally created by Lester Binder at Northwestern University). Funding The work presented here was funded by Alzheimer’s Research UK (Grant refs: ARUK-PPG2014A-21, ARUK-NSG2015-1, ARUK-NCG2017A-3 awarded to DK and BP). HB was supported by an Alzheimer’s Society Doctoral Training Centre grant (grant ref:228) to BP. MK’s participation in the project was funded by ARUK Scotland Network pump priming award to DK and BP.Peer reviewe
    corecore