39 research outputs found

    Decay and fragmentation in an open Bose-Hubbard chain

    Full text link
    We analyze the decay of ultracold atoms from an optical lattice with loss form a single lattice site. If the initial state is dynamically stable a suitable amount of dissipation can stabilize a Bose-Einstein condensate, such that it remains coherent even in the presence of strong interactions. A transition between two different dynamical phases is observed if the initial state is dynamically unstable. This transition is analyzed here in detail. For strong interactions, the system relaxes to an entangled quantum state with remarkable statistical properties: The atoms bunch in a few "breathers" forming at random positions. Breathers at different positions are coherent, such that they can be used in precision quantum interferometry and other applications.Comment: 15 pages, 14 figure

    Beyond Mean-Field Dynamics in Closed and Open Bosonic Systems

    Get PDF
    The present thesis is devoted to the dynamics in open or closed many-body bosonic systems, with the use of beyond mean-field methods. In the first part, inspired by the state-of-the-art experiments, we study the dynamics of a Bose-Einstein condensation which is loaded in an optical lattice with localized loss channels for the atoms. We prove that the particular form of the dissipation can help us to control the many-body dynamics. The loss allows the local manipulation of the system’s coherence properties and creates attractive fixed points in the classical (mean-field) phase space. We predict the dynamical creation of stable nonlinear structures like discrete bright and dark solitons. Furthermore, for specific initial states, the systems produces highly entangled and long-living states, which are of high relevance for practical applications. The first part of this thesis ends with the study of non-equilibrium bosonic transport across optical one-dimensional lattices. In the second part, we present techniques for bosonic many-body systems which are based on path integrals. We analyze the Bose-Einstein condensation phenomenon by using tools from quantum information theory and field theory. Finally, we introduce a coherent state path integral formalism in the continuum, which allows us the systematic development of approximate methods for the study of bosons in optical lattices

    Bosonic transport through a chain of quantum dots

    Full text link
    The particle transport through a chain of quantum dots coupled to two bosonic reservoirs is studied. For the case of reservoirs of non-interacting bosonic particles, we derive an exact set of stochastic differential equations, whose memory kernels and driving noise are characterised entirely by the properties of the reservoirs. Going to the Markovian limit an analytically solvable case is presented. The effect of interparticle interactions on the transient behaviour of the system, when both reservoirs are instantaneously coupled to an empty chain of quantum dots, is approximated by a semiclassical method, known as the Truncated Wigner approximation. The steady-state particle flow through the chain and the mean particle occupations are explained via the spectral properties of the interacting system.Comment: 7 pages, 4 figure

    Search for dark matter produced in association with bottom or top quarks in ‚ąös = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb‚ąí1 of proton‚Äďproton collision data recorded by the ATLAS experiment at ‚ąös = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC