61 research outputs found
Recurrent Models of Visual Attention
Applying convolutional neural networks to large images is computationally
expensive because the amount of computation scales linearly with the number of
image pixels. We present a novel recurrent neural network model that is capable
of extracting information from an image or video by adaptively selecting a
sequence of regions or locations and only processing the selected regions at
high resolution. Like convolutional neural networks, the proposed model has a
degree of translation invariance built-in, but the amount of computation it
performs can be controlled independently of the input image size. While the
model is non-differentiable, it can be trained using reinforcement learning
methods to learn task-specific policies. We evaluate our model on several image
classification tasks, where it significantly outperforms a convolutional neural
network baseline on cluttered images, and on a dynamic visual control problem,
where it learns to track a simple object without an explicit training signal
for doing so
Unsupervised Feature Learning by Deep Sparse Coding
In this paper, we propose a new unsupervised feature learning framework,
namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer
architecture for visual object recognition tasks. The main innovation of the
framework is that it connects the sparse-encoders from different layers by a
sparse-to-dense module. The sparse-to-dense module is a composition of a local
spatial pooling step and a low-dimensional embedding process, which takes
advantage of the spatial smoothness information in the image. As a result, the
new method is able to learn several levels of sparse representation of the
image which capture features at a variety of abstraction levels and
simultaneously preserve the spatial smoothness between the neighboring image
patches. Combining the feature representations from multiple layers, DeepSC
achieves the state-of-the-art performance on multiple object recognition tasks.Comment: 9 pages, submitted to ICL
- …