5 research outputs found

    The Minimum Rank Problem: a counterexample

    Get PDF
    We provide a counterexample to a recent conjecture that the minimum rank of every sign pattern matrix can be realized by a rational matrix. We use one of the equivalences of the conjecture and some results from projective geometry. As a consequence of the counterexample, we show that there is a graph for which the minimum rank over the reals is strictly smaller than the minimum rank over the rationals. We also make some comments on the minimum rank of sign pattern matrices over different subfields of R\mathbb R.Comment: 4 pages, 1 figur

    On the Degree of Polynomials Computing Square Roots Mod p

    Get PDF
    For an odd prime p, we say f(X) ∈ F_p[X] computes square roots in F_p if, for all nonzero perfect squares a ∈ F_p, we have f(a)² = a. When p ≡ 3 mod 4, it is well known that f(X) = X^{(p+1)/4} computes square roots. This degree is surprisingly low (and in fact lowest possible), since we have specified (p-1)/2 evaluations (up to sign) of the polynomial f(X). On the other hand, for p ≡ 1 mod 4 there was previously no nontrivial bound known on the lowest degree of a polynomial computing square roots in F_p. We show that for all p ≡ 1 mod 4, the degree of a polynomial computing square roots has degree at least p/3. Our main new ingredient is a general lemma which may be of independent interest: powers of a low degree polynomial cannot have too many consecutive zero coefficients. The proof method also yields a robust version: any polynomial that computes square roots for 99% of the squares also has degree almost p/3. In the other direction, Agou, Deliglése, and Nicolas [Agou et al., 2003] showed that for infinitely many p ≡ 1 mod 4, the degree of a polynomial computing square roots can be as small as 3p/8

    On list recovery of high-rate tensor codes

    Get PDF
    We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway, Ron-Zewi, and Wootters (FOCS’17). In that work it was shown that the tensor product of an efficient (poly-time) high-rate globally list recoverable code is approximately locally list recoverable, as well as globally list recoverable in probabilistic near-linear time. This was used in turn to give the first capacity-achieving list decodable codes with (1) local list decoding algorithms, and with (2) probabilistic near-linear time global list decoding algorithms. This also yielded constant-rate codes approaching the Gilbert-Varshamov bound with probabilistic near-linear time global unique decoding algorithms. In the current work we obtain the following results: 1. The tensor product of an efficient (poly-time) high-rate globally list recoverable code is globally list recoverable in deterministic near-linear time. This yields in turn the first capacity-achieving list decodable codes with deterministic near-linear time global list decoding algorithms. It also gives constant-rate codes approaching the Gilbert-Varshamov bound with deterministic near-linear time global unique decoding algorithms. 2. If the base code is additionally locally correctable, then the tensor product is (genuinely) locally list recoverable. This yields in turn (non-explicit) constant-rate codes approaching the Gilbert- Varshamov bound that are locally correctable with query complexity and running time No(1). This improves over prior work by Gopi et. al. (SODA’17; IEEE Transactions on Information Theory’18) that only gave query complexity N" with rate that is exponentially small in 1/". 3. A nearly-tight combinatorial lower bound on output list size for list recovering high-rate tensor codes. This bound implies in turn a nearly-tight lower bound of N (1/ log logN) on the product of query complexity and output list size for locally list recovering high-rate tensor codes.</p

    On the Communication Complexity of Read-Once AC^0 Formulae

    No full text
    We study the 2-party randomized communication complexity of read-once AC[superscript 0] formulae. For balanced AND-OR trees T with n inputs and depth d, we show that the communication complexity of the function f[superscript T](x, y) = T(x omicron y) is Omega(n/4[superscript d]) where (x omicron y)[subscript i] is defined so that the resulting tree also has alternating levels of AND and OR gates. For each bit of x, y, the operation omicron is either AND or OR depending on the gate in T to which it is an input. Using this, we show that for general AND-OR trees T with n inputs and depth d, the communication complexity of f[superscript T](x, y) is n/2[superscript Omega(d log d)]. These results generalize classical results on the communication complexity of set-disjointness (where T is an OR -gate) and recent results on the communication complexity of the TRIBES functions (where T is a depth-2 read-once formula). Our techniques build on and extend the information complexity methodology for proving lower bounds on randomized communication complexity. Our analysis for trees of depth d proceeds in two steps: (1) reduction to measuring the information complexity of binary depth-d trees, and (2) proving lower bounds on the information complexity of binary trees. In order to execute this program, we carefully construct input distributions under which both these steps can be carried out simultaneously. We believe the tools we develop will prove useful in further studies of information complexity in particular, and communication complexity in general
    corecore