1,104 research outputs found
Importance of Acid–Base Equilibrium in Electrocatalytic Oxidation of Formic Acid on Platinum
This work was supported by Japanese Society for the Promotion of Science (JSPS) KAKENHI Grants Nos. 24550143 and 24750117 and MEXT Project of Integrated Research on Chemical Synthesis. M.T.M.K. gratefully acknowledges the award of Long-Term Fellowship of JSPS (No. L-11527) and Visiting Professorship of Hokkaido University. T.U. acknowledges Grants-in-Aid for Regional R&D Proposal-Based Program from Northern Advancement Center for Science & Technology of Hokkaido, Japan. J.J. acknowledges scholarship of Asian Graduate School, Hokkaido University.Peer reviewedPostprin
Learning Design: reflections on a snapshot of the current landscape
The mounting wealth of open and readily available information and the swift evolution of social, mobile and creative technologies warrant a re-conceptualisation of the role of educators: from providers of knowledge to designers of learning. This need is being addressed by a growing trend of research in Learning Design. Responding to this trend, the Art and Science of Learning Design workshop brought together leading voices in the field and provided a forum for discussing its key issues. It focused on three thematic axes: practices and methods, tools and resources, and theoretical frameworks. This paper reviews some definitions of Learning Design and then summarises the main contributions to the workshop. Drawing upon these, we identify three key challenges for Learning Design that suggest directions for future research
Electric-Double-Layer-Modulation Microscopy
The electric double layer (EDL) formed around charged nanostructures at the
liquid-solid interface determines their electrochemical activity and influences
their electrical and optical polarizability. We experimentally demonstrate that
restructuring of the EDL at the nanoscale can be detected by dark-field
scattering microscopy. Temporal and spatial characterization of the scattering
signal demonstrates that the potentiodynamic optical contrast is proportional
to the accumulated charge of polarisable ions at the interface and its time
derivative represents the nanoscale ionic current. The material-specificity of
the EDL formation is used in our work as a label-free contrast mechanism to
image nanostructures and perform spatially-resolved cyclic voltametry on ion
current density of a few attoamperes, corresponding to the exchange of only a
few hundred ions.Comment: 6 pages, 4 figrue
The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO2 Reduction on Gold Electrodes
CO2 electroreduction (CO2RR) is a sustainable alternative for producing fuels and chemicals. Metal cations in the electrolyte have a strong impact on the reaction, but mainly alkali species have been studied in detail. In this work, we elucidate how multivalent cations (Li+, Cs+, Be2+, Mg2+, Ca2+, Ba2+, Al3+, Nd3+, and Ce3+) affect CO2RR and the competing hydrogen evolution by studying these reactions on polycrystalline gold at pH = 3. We observe that cations have no effect on proton reduction at low overpotentials, but at alkaline surface pH acidic cations undergo hydrolysis, generating a second proton reduction regime. The activity and onset for the water reduction reaction correlate with cation acidity, with weakly hydrated trivalent species leading to the highest activity. Acidic cations only favor CO2RR at low overpotentials and in acidic media. At high overpotentials, the activity for CO increases in the order Ca2+ < Li+ < Ba2+ < Cs+. To favor this reaction there must be an interplay between cation stabilization of the*CO2- intermediate, cation accumulation at the outer Helmholtz plane (OHP), and activity for water reduction. Ab initio molecular dynamics simulations with explicit electric field show that nonacidic cations show lower repulsion at the interface, accumulating more at the OHP, thus triggering local promoting effects. Water dissociation kinetics is increasingly promoted by strongly acidic cations (Nd3+, Al3+), in agreement with experimental evidence. Cs+, Ba2+, and Nd3+ coordinate to adsorbed CO2 steadily; thus they enable*CO2- stabilization and barrierless protonation to COOH and further reduction products
Influence of Cations on HCOOH and CO Formation during CO2 Reduction on a PdMLPt(111) Electrode
Understanding the role of cations in the electrochemical CO2 reduction (CO2RR) process is of fundamental importance for practical application. In this work, we investigate how cations influence HCOOH and CO formation on PdMLPt(111) in pH 3 electrolytes. While only (a small amount of adsorbed) CO forms on PdMLPt(111) in the absence of metal cations, the onset potential of HCOOH and CO decreases with increasing cation concentrations. The cation effect is stronger on HCOOH formation than that on CO formation on PdMLPt(111). Density functional theory simulations indicate that cations facilitate both hydride formation and CO2 activation by polarizing the electronic density at the surface and stabilizing *CO2-. Although the upshift of the metal work function caused by high coverage of adsorbates limits hydride formation, the cation-induced electric field counterbalances this effect in the case of *H species, sustaining HCOOH production at mild negative potentials. Instead, at the high *CO coverages observed at very negative potentials, surface hydrides do not form, preventing the HCOOH route both in the absence and presence of cations. Our results open the way for a consistent evaluation of cationic electrolyte effects on both activity and selectivity in CO2RR on Pd-Pt catalysts
Landing and catalytic characterization of individual nanoparticles on electrode surfaces
We demonstrate a novel and versatile pipet-based approach to study the landing of individual nanoparticles (NPs) on various electrode materials without any need for encapsulation or fabrication of complex substrate electrode structures, providing great flexibility with respect to electrode materials. Because of the small electrode area defined by the pipet dimensions, the background current is low, allowing for the detection of minute current signals with good time resolution. This approach was used to characterize the potential-dependent activity of Au NPs and to measure the catalytic activity of a single NP on a TEM grid, combining electrochemical and physical characterization at the single NP level for the first time. Such measurements open up the possibility of studying the relation between the size, structure and activity of catalyst particles unambiguously
Aging dynamics in reentrant ferromagnet: CuCoCl-FeCl graphite bi-intercalation compound
Aging dynamics of a reentrant ferromagnet
CuCoCl-FeCl graphite bi-intercalation compound has
been studied using AC and DC magnetic susceptibility. This compound undergoes
successive transitions at the transition temperatures ( K) and
( K). The relaxation rate exhibits a characteristic
peak at close to a wait time below , indicating that
the aging phenomena occur in both the reentrant spin glass (RSG) phase below
and the ferromagnetic (FM) phase between and . The
relaxation rate () in the FM phase
exhibits two peaks around and a time much shorter than under
the positive -shift aging, indicating a partial rejuvenation of domains. The
aging state in the FM phase is fragile against a weak magnetic-field
perturbation. The time () dependence of around is well approximated by a stretched exponential relaxation:
. The exponent depends on
, , and . The relaxation time () exhibits a
local maximum around 5 K, reflecting a chaotic nature of the FM phase. It
drastically increases with decreasing temperature below .Comment: 16 pages,16 figures, submitted to Physical Review
Cleavage of the C-C bond in the ethanol oxidation reaction on platinum. Insight from experiments and calculations
"This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b03117, see http://pubs.acs.org/page/policy/articlesonrequest/index.html".[EN] Using a combination of experimental and computational methods, mainly FTIR and DFT calculations, new insights are provided here in order to better understand the cleavage of the C–C bond taking place during the complete oxidation of ethanol on platinum stepped surfaces. First, new experimental results pointing out that platinum stepped surfaces having (111) terraces promote the C–C bond breaking are presented. Second, it is computationally shown that the special adsorption properties of the atoms in the step are able to promote the C–C scission, provided that no other adsorbed species are present on the step, which is in agreement with the experimental results. In comparison with the (111) terrace, the cleavage of the C–C bond on the step has a significantly lower activation energy, which would provide an explanation for the observed experimental results. Finally, reactivity differences under acidic and alkaline conditions are discussed using the new experimental and theoretical evidence.This work has been financially supported by the MINECO (Spain) (project CTQ2013-44083-P) and Generalitat Valenciana (project PROMETEOII/2014/013).Ferre Vilaplana, A.; Buso-Rogero, C.; Feliu, JM.; Herrero, E. (2016). Cleavage of the C-C bond in the ethanol oxidation reaction on platinum. Insight from experiments and calculations. Journal of Physical Chemistry C. 120(21):11590-11597. https://doi.org/10.1021/acs.jpcc.6b03117S11590115971202
- …