1,261 research outputs found

    Are there laws of genome evolution?

    Get PDF
    Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection, therefore the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as 'laws of evolutionary genomics' in the same sense 'law' is understood in modern physics.Comment: 17 pages, 2 figure

    Computational genomics

    Get PDF

    Mathematical modeling of tumor therapy with oncolytic viruses: Effects of parametric heterogeneity on cell dynamics

    Get PDF
    One of the mechanisms that ensure cancer robustness is tumor heterogeneity, and its effects on tumor cells dynamics have to be taken into account when studying cancer progression. There is no unifying theoretical framework in mathematical modeling of carcinogenesis that would account for parametric heterogeneity. Here we formulate a modeling approach that naturally takes stock of inherent cancer cell heterogeneity and illustrate it with a model of interaction between a tumor and an oncolytic virus. We show that several phenomena that are absent in homogeneous models, such as cancer recurrence, tumor dormancy, an others, appear in heterogeneous setting. We also demonstrate that, within the applied modeling framework, to overcome the adverse effect of tumor cell heterogeneity on cancer progression, a heterogeneous population of an oncolytic virus must be used. Heterogeneity in parameters of the model, such as tumor cell susceptibility to virus infection and virus replication rate, can lead to complex, time-dependent behaviors of the tumor. Thus, irregular, quasi-chaotic behavior of the tumor-virus system can be caused not only by random perturbations but also by the heterogeneity of the tumor and the virus. The modeling approach described here reveals the importance of tumor cell and virus heterogeneity for the outcome of cancer therapy. It should be straightforward to apply these techniques to mathematical modeling of other types of anticancer therapy.Comment: 45 pages, 6 figures; submitted to Biology Direc

    On the feasibility of saltational evolution

    Full text link
    Is evolution always gradual or can it make leaps? We examine a mathematical model of an evolutionary process on a fitness landscape and obtain analytic solutions for the probability of multi-mutation leaps, that is, several mutations occurring simultaneously, within a single generation in one genome, and being fixed all together in the evolving population. The results indicate that, for typical, empirically observed combinations of the parameters of the evolutionary process, namely, effective population size, mutation rate, and distribution of selection coefficients of mutations, the probability of a multi-mutation leap is low, and accordingly, the contribution of such leaps is minor at best. However, we show that, taking sign epistasis into account, leaps could become an important factor of evolution in cases of substantially elevated mutation rates, such as stress-induced mutagenesis in microbes. We hypothesize that stress-induced mutagenesis is an evolvable adaptive strategy.Comment: Extended version, in particular, the section is added on non-equilibrium model of stress-induced mutagenesi

    Biological applications of the theory of birth-and-death processes

    Full text link
    In this review, we discuss the applications of the theory of birth-and-death processes to problems in biology, primarily, those of evolutionary genomics. The mathematical principles of the theory of these processes are briefly described. Birth-and-death processes, with some straightforward additions such as innovation, are a simple, natural formal framework for modeling a vast variety of biological processes such as population dynamics, speciation, genome evolution, including growth of paralogous gene families and horizontal gene transfer, and somatic evolution of cancers. We further describe how empirical data, e.g., distributions of paralogous gene family size, can be used to choose the model that best reflects the actual course of evolution among different versions of birth-death-and-innovation models. It is concluded that birth-and-death processes, thanks to their mathematical transparency, flexibility and relevance to fundamental biological process, are going to be an indispensable mathematical tool for the burgeoning field of systems biology.Comment: 29 pages, 4 figures; submitted to "Briefings in Bioinformatics

    Towards physical principles of biological evolution

    Full text link
    Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort.Comment: Invited article, Focus Issue on 21th Century Frontiers, final versio
    • …
    corecore