3,255 research outputs found
Soyuz 22: New contribution to earth study from space
The mission of space flight Soyuz-22 was to develop new and improved methods and means for finding tthe Earth's natural resources from outer space to aid the economy. With the help of the new multispectral space camera, MKF-6, the cosmonauts were able to photograph selected areas of U.S.S.R. and the German Democratic Republic in 4 visible and 2 infrared regions of the spectrum. The MKF-6 can simultaneously photograph areas in 6 spectral regions and register both the natural electromagnetic radiation of surface objects and the solar radiation reflected by them
Tectonic asymmetry of the earth and other planets
The structures of Earth, Mars, Venus, and the Moon are examined and compared. Global tectonic characteristics are presented for each. A comparison of the tectonics reveals the structural asymetry of these planets and the moon. Tectonic asymmetry information for the group is used to interpret certain aspects of the earth's geological past
A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows
In this article we set up a splitting variant of the JKO scheme in order to
handle gradient flows with respect to the Kantorovich-Fisher-Rao metric,
recently introduced and defined on the space of positive Radon measure with
varying masses. We perform successively a time step for the quadratic
Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao
distance. Exploiting some inf-convolution structure of the metric we show
convergence of the whole process for the standard class of energy functionals
under suitable compactness assumptions, and investigate in details the case of
internal energies. The interest is double: On the one hand we prove existence
of weak solutions for a certain class of reaction-advection-diffusion
equations, and on the other hand this process is constructive and well adapted
to available numerical solvers.Comment: Final version, to appear in SIAM SIM
Electrochemical Reducing of Terbium and Holmium Ions in the Sodium and Potassium Chlorides Melt with Equimolar Composition
Interest to rare-earth metals (REM) and their alloys is due to the possibility of using them for the creation of new materials need for modern technology. For instance, REM as alloying components allows for preparation of material with special magnetic properties. A promising method for forming such coating is the surface treatment of metals. This process has an electrochemical character as such for the organization of technology the knowledge of kinetics and mechanism of these processes is important. Despite significant interest in rare-earth metals, these issues are not well described in the literature. In order to choose an adequate mathematical model for calculation of kinetic primers, preliminary experiments that allow evaluating the reversibility of the electrode process have been conducted. Based on that, it was concluded that cathodic reduction of terbium and holmium ions in equimolar NaCl-KCl melt is irreversible. By means of voltammetric analysis, kinetic parameters (transfer coefficients, heterogeneous constants of charge transfer rate) of terbium and holmium electroreduction in equimolar NaCl-KCl melt were determined. The experiment was conducted in a three-electrode cell under a purified argon atmosphere. A dependency of kinetic parameters on the concentration of terbium and holmium chlorides wt (%): 1, 3, 5, 7, 10, was determined. The experiment was conducted in 1073â1173K temperature range. Values of kinetic parameters increase with temperature but decrease with the increase of REM chloride. Based on obtained data, it was found that electroreduction of chloride complexes LnCl63â (LnâTb, Ho) in equimolar NaCl-KCl melt is irreversible in the studied range of temperatures and REM concentrations. In summary of experimental data, in range of temperature and rare-earth chloride concentration, and assumption was made that reduction of terbium and holmium ions occurs in two stages. The process includes the preceding stage of complex dissociation. A mechanism of LnCl63â complex reduction in the mentioned melt is proposed. The obtained results are in agreement with literate data for analogues systems
Determination Of Formation Regimes For Bilayer Cobalt Dysprosium Intermetalic Surface Alloy
High tech industrial fields on modern development stage are in need of construction materials with an optimal ratio of volume and surface properties, along with low cost of material itself. As evidenced by studies, in order to give a set complex of properties to a workpiece that operates under specific conditions, it is often sufficient to only modify its surface area. Over the course of studies, by means of gravimetric, influence of technological parameters (temperature and time samples are kept in the melt) on specific mass change of cobalt samples, that act as substrate, during electroless diffusive saturation with dysprosium in eutectic melt of lithium and potassium chlorides have been studied. A mathematical dependency was established for specific mass change of cobalt samples on time spent in melt for temperature range of 873â973 K. Composition of intermetallic coats obtained on surface of cobalt samples was studied means of EDX and SEM analyses. It was discovered, that for chosen temperature range, diffusion layers formed on surface of cobalt samples consists of two structural zones that correspond to Co-Dy and Cp2Dy phases
Characterization of extrasolar terrestrial planets from diurnal photometric variability
The detection of massive planets orbiting nearby stars has become almost
routine, but current techniques are as yet unable to detect terrestrial planets
with masses comparable to the Earth's. Future space-based observatories to
detect Earth-like planets are being planned. Terrestrial planets orbiting in
the habitable zones of stars-where planetary surface conditions are compatible
with the presence of liquid water-are of enormous interest because they might
have global environments similar to Earth's and even harbor life. The light
scattered by such a planet will vary in intensity and colour as the planet
rotates; the resulting light curve will contain information about the planet's
properties. Here we report a model that predicts features that should be
discernible in light curves obtained by low-precision photometry. For
extrasolar planets similar to Earth we expect daily flux variations up to
hundreds of percent, depending sensitively on ice and cloud cover. Qualitative
changes in surface or climate generate significant changes in the predicted
light curves. This work suggests that the meteorological variability and the
rotation period of an Earth-like planet could be derived from photometric
observations. Other properties such as the composition of the surface (e.g.,
ocean versus land fraction), climate indicators (for example ice and cloud
cover), and perhaps even signatures of Earth-like plant life could be
constrained or possibly, with further study, even uniquely determined.Comment: Published in Nature. 9 pages including 3 figure
Neutron star composition in strong magnetic fields
We study the problem of neutron star composition in the presence of a strong
magnetic field. The effects of the anomalous magnetic moments of both nucleons
and electrons are investigated in relativistic mean field calculations for a
-equilibrium system. Since neutrons are fully spin polarized in a large
field, generally speaking, the proton fraction can never exceed the field free
case. An extremely strong magnetic field may lead to a pure neutron matter
instead of a proton-rich matter.Comment: 12 pages, 3 postscript files include
An Improved Quantum Molecular Dynamics Model and its Applications to Fusion Reaction near Barrier
An improved Quantum Molecular Dynamics model is proposed. By using this
model, the properties of ground state of nuclei from Li to Pb can
be described very well with one set of parameters. The fusion reactions for
Ca+Zr, Ca+Zr and Ca+Zr at energy near
barrier are studied by this model. The experimental data of the fusion cross
sections for Ca+Zr at the energy near barrier can be
reproduced remarkably well without introducing any new parameters. The
mechanism for the enhancement of fusion probability for fusion reactions with
neutron-rich projectile or target is analyzed.Comment: 20 pages, 12 figures, 3 table
Dynamic study on fusion reactions for Ca+Zr around Coulomb barrier
By using the updated improved Quantum Molecular Dynamics model in which a
surface-symmetry potential term has been introduced for the first time, the
excitation functions for fusion reactions of Ca+Zr at
energies around the Coulomb barrier have been studied. The experimental data of
the fusion cross sections for Ca+Zr have been reproduced
remarkably well without introducing any new parameters. The fusion cross
sections for the neutron-rich fusion reactions of Ca+Zr around
the Coulomb barrier are predicted to be enhanced compared with a
non-neutron-rich fusion reaction. In order to clarify the mechanism of the
enhancement of the fusion cross sections for neutron-rich nuclear fusions, we
pay a great attention to study the dynamic lowering of the Coulomb barrier
during a neck formation. The isospin effect on the barrier lowering is
investigated. It is interesting that the effect of the projectile and target
nuclear structure on fusion dynamics can be revealed to a certain extent in our
approach. The time evolution of the N/Z ratio at the neck region has been
firstly illustrated. A large enhancement of the N/Z ratio at neck region for
neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
Chaotic scattering on surfaces and collisional damping of collective modes
The damping of hot giant dipole resonances is investigated. The contribution
of surface scattering is compared with the contribution from interparticle
collisions. A unified response function is presented which includes surface
damping as well as collisional damping. The surface damping enters the response
via the Lyapunov exponent and the collisional damping via the relaxation time.
The former is calculated for different shape deformations of quadrupole and
octupole type. The surface as well as the collisional contribution each
reproduce almost the experimental value, therefore we propose a proper
weighting between both contributions related to their relative occurrence due
to collision frequencies between particles and of particles with the surface.
We find that for low and high temperatures the collisional contribution
dominates whereas the surface damping is dominant around the temperatures
of the centroid energy.Comment: PRC su
- âŠ