3,255 research outputs found

    Soyuz 22: New contribution to earth study from space

    Get PDF
    The mission of space flight Soyuz-22 was to develop new and improved methods and means for finding tthe Earth's natural resources from outer space to aid the economy. With the help of the new multispectral space camera, MKF-6, the cosmonauts were able to photograph selected areas of U.S.S.R. and the German Democratic Republic in 4 visible and 2 infrared regions of the spectrum. The MKF-6 can simultaneously photograph areas in 6 spectral regions and register both the natural electromagnetic radiation of surface objects and the solar radiation reflected by them

    Tectonic asymmetry of the earth and other planets

    Get PDF
    The structures of Earth, Mars, Venus, and the Moon are examined and compared. Global tectonic characteristics are presented for each. A comparison of the tectonics reveals the structural asymetry of these planets and the moon. Tectonic asymmetry information for the group is used to interpret certain aspects of the earth's geological past

    A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows

    Full text link
    In this article we set up a splitting variant of the JKO scheme in order to handle gradient flows with respect to the Kantorovich-Fisher-Rao metric, recently introduced and defined on the space of positive Radon measure with varying masses. We perform successively a time step for the quadratic Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao distance. Exploiting some inf-convolution structure of the metric we show convergence of the whole process for the standard class of energy functionals under suitable compactness assumptions, and investigate in details the case of internal energies. The interest is double: On the one hand we prove existence of weak solutions for a certain class of reaction-advection-diffusion equations, and on the other hand this process is constructive and well adapted to available numerical solvers.Comment: Final version, to appear in SIAM SIM

    Electrochemical Reducing of Terbium and Holmium Ions in the Sodium and Potassium Chlorides Melt with Equimolar Composition

    Get PDF
    Interest to rare-earth metals (REM) and their alloys is due to the possibility of using them for the creation of new materials need for modern technology. For instance, REM as alloying components allows for preparation of material with special magnetic properties. A promising method for forming such coating is the surface treatment of metals. This process has an electrochemical character as such for the organization of technology the knowledge of kinetics and mechanism of these processes is important. Despite significant interest in rare-earth metals, these issues are not well described in the literature. In order to choose an adequate mathematical model for calculation of kinetic primers, preliminary experiments that allow evaluating the reversibility of the electrode process have been conducted. Based on that, it was concluded that cathodic reduction of terbium and holmium ions in equimolar NaCl-KCl melt is irreversible. By means of voltammetric analysis, kinetic parameters (transfer coefficients, heterogeneous constants of charge transfer rate) of terbium and holmium electroreduction in equimolar NaCl-KCl melt were determined. The experiment was conducted in a three-electrode cell under a purified argon atmosphere. A dependency of kinetic parameters on the concentration of terbium and holmium chlorides wt (%): 1, 3, 5, 7, 10, was determined. The experiment was conducted in 1073–1173K temperature range. Values of kinetic parameters increase with temperature but decrease with the increase of REM chloride. Based on obtained data, it was found that electroreduction of chloride complexes LnCl63– (Ln–Tb, Ho) in equimolar NaCl-KCl melt is irreversible in the studied range of temperatures and REM concentrations. In summary of experimental data, in range of temperature and rare-earth chloride concentration, and assumption was made that reduction of terbium and holmium ions occurs in two stages. The process includes the preceding stage of complex dissociation. A mechanism of LnCl63– complex reduction in the mentioned melt is proposed. The obtained results are in agreement with literate data for analogues systems

    Determination Of Formation Regimes For Bilayer Cobalt Dysprosium Intermetalic Surface Alloy

    Full text link
    High tech industrial fields on modern development stage are in need of construction materials with an optimal ratio of volume and surface properties, along with low cost of material itself. As evidenced by studies, in order to give a set complex of properties to a workpiece that operates under specific conditions, it is often sufficient to only modify its surface area. Over the course of studies, by means of gravimetric, influence of technological parameters (temperature and time samples are kept in the melt) on specific mass change of cobalt samples, that act as substrate, during electroless diffusive saturation with dysprosium in eutectic melt of lithium and potassium chlorides have been studied. A mathematical dependency was established for specific mass change of cobalt samples on time spent in melt for temperature range of 873–973 K. Composition of intermetallic coats obtained on surface of cobalt samples was studied means of EDX and SEM analyses. It was discovered, that for chosen temperature range, diffusion layers formed on surface of cobalt samples consists of two structural zones that correspond to Co-Dy and Cp2Dy phases

    Characterization of extrasolar terrestrial planets from diurnal photometric variability

    Full text link
    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbor life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's properties. Here we report a model that predicts features that should be discernible in light curves obtained by low-precision photometry. For extrasolar planets similar to Earth we expect daily flux variations up to hundreds of percent, depending sensitively on ice and cloud cover. Qualitative changes in surface or climate generate significant changes in the predicted light curves. This work suggests that the meteorological variability and the rotation period of an Earth-like planet could be derived from photometric observations. Other properties such as the composition of the surface (e.g., ocean versus land fraction), climate indicators (for example ice and cloud cover), and perhaps even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.Comment: Published in Nature. 9 pages including 3 figure

    Neutron star composition in strong magnetic fields

    Full text link
    We study the problem of neutron star composition in the presence of a strong magnetic field. The effects of the anomalous magnetic moments of both nucleons and electrons are investigated in relativistic mean field calculations for a ÎČ\beta-equilibrium system. Since neutrons are fully spin polarized in a large field, generally speaking, the proton fraction can never exceed the field free case. An extremely strong magnetic field may lead to a pure neutron matter instead of a proton-rich matter.Comment: 12 pages, 3 postscript files include

    An Improved Quantum Molecular Dynamics Model and its Applications to Fusion Reaction near Barrier

    Get PDF
    An improved Quantum Molecular Dynamics model is proposed. By using this model, the properties of ground state of nuclei from 6^{6}Li to 208^{208}Pb can be described very well with one set of parameters. The fusion reactions for 40^{40}Ca+90^{90}Zr, 40^{40}Ca+96^{96}Zr and 48^{48}Ca+90^{90}Zr at energy near barrier are studied by this model. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr at the energy near barrier can be reproduced remarkably well without introducing any new parameters. The mechanism for the enhancement of fusion probability for fusion reactions with neutron-rich projectile or target is analyzed.Comment: 20 pages, 12 figures, 3 table

    Dynamic study on fusion reactions for 40,48^{40,48}Ca+90,96^{90,96}Zr around Coulomb barrier

    Full text link
    By using the updated improved Quantum Molecular Dynamics model in which a surface-symmetry potential term has been introduced for the first time, the excitation functions for fusion reactions of 40,48^{40,48}Ca+90,96^{90,96}Zr at energies around the Coulomb barrier have been studied. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr have been reproduced remarkably well without introducing any new parameters. The fusion cross sections for the neutron-rich fusion reactions of 48^{48}Ca+90,96^{90,96}Zr around the Coulomb barrier are predicted to be enhanced compared with a non-neutron-rich fusion reaction. In order to clarify the mechanism of the enhancement of the fusion cross sections for neutron-rich nuclear fusions, we pay a great attention to study the dynamic lowering of the Coulomb barrier during a neck formation. The isospin effect on the barrier lowering is investigated. It is interesting that the effect of the projectile and target nuclear structure on fusion dynamics can be revealed to a certain extent in our approach. The time evolution of the N/Z ratio at the neck region has been firstly illustrated. A large enhancement of the N/Z ratio at neck region for neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table

    Chaotic scattering on surfaces and collisional damping of collective modes

    Get PDF
    The damping of hot giant dipole resonances is investigated. The contribution of surface scattering is compared with the contribution from interparticle collisions. A unified response function is presented which includes surface damping as well as collisional damping. The surface damping enters the response via the Lyapunov exponent and the collisional damping via the relaxation time. The former is calculated for different shape deformations of quadrupole and octupole type. The surface as well as the collisional contribution each reproduce almost the experimental value, therefore we propose a proper weighting between both contributions related to their relative occurrence due to collision frequencies between particles and of particles with the surface. We find that for low and high temperatures the collisional contribution dominates whereas the surface damping is dominant around the temperatures 3/2π\sqrt{3}/2\pi of the centroid energy.Comment: PRC su
    • 

    corecore