170 research outputs found
Minimizing a sum of submodular functions
We consider the problem of minimizing a function represented as a sum of
submodular terms. We assume each term allows an efficient computation of {\em
exchange capacities}. This holds, for example, for terms depending on a small
number of variables, or for certain cardinality-dependent terms.
A naive application of submodular minimization algorithms would not exploit
the existence of specialized exchange capacity subroutines for individual
terms. To overcome this, we cast the problem as a {\em submodular flow} (SF)
problem in an auxiliary graph, and show that applying most existing SF
algorithms would rely only on these subroutines.
We then explore in more detail Iwata's capacity scaling approach for
submodular flows (Math. Programming, 76(2):299--308, 1997). In particular, we
show how to improve its complexity in the case when the function contains
cardinality-dependent terms.Comment: accepted to "Discrete Applied Mathematics
Generalized roof duality and bisubmodular functions
Consider a convex relaxation of a pseudo-boolean function . We
say that the relaxation is {\em totally half-integral} if is a
polyhedral function with half-integral extreme points , and this property is
preserved after adding an arbitrary combination of constraints of the form
, , and where \gamma\in\{0, 1, 1/2} is a
constant. A well-known example is the {\em roof duality} relaxation for
quadratic pseudo-boolean functions . We argue that total half-integrality is
a natural requirement for generalizations of roof duality to arbitrary
pseudo-boolean functions. Our contributions are as follows. First, we provide a
complete characterization of totally half-integral relaxations by
establishing a one-to-one correspondence with {\em bisubmodular functions}.
Second, we give a new characterization of bisubmodular functions. Finally, we
show some relationships between general totally half-integral relaxations and
relaxations based on the roof duality.Comment: 14 pages. Shorter version to appear in NIPS 201
A Faster Approximation Algorithm for the Gibbs Partition Function
We consider the problem of estimating the partition function of a Gibbs distribution with a Hamilton , or more
precisely the logarithm of the ratio . It has been
recently shown how to approximate with high probability assuming the
existence of an oracle that produces samples from the Gibbs distribution for a
given parameter value in . The current best known approach due to
Huber [9] uses oracle
calls on average where is the desired accuracy of approximation
and is assumed to lie in . We improve the complexity
to oracle calls. We also show that the same
complexity can be achieved if exact oracles are replaced with approximate
sampling oracles that are within variation
distance from exact oracles. Finally, we prove a lower bound of oracle calls under a natural model of computation
Generalized sequential tree-reweighted message passing
This paper addresses the problem of approximate MAP-MRF inference in general
graphical models. Following [36], we consider a family of linear programming
relaxations of the problem where each relaxation is specified by a set of
nested pairs of factors for which the marginalization constraint needs to be
enforced. We develop a generalization of the TRW-S algorithm [9] for this
problem, where we use a decomposition into junction chains, monotonic w.r.t.
some ordering on the nodes. This generalizes the monotonic chains in [9] in a
natural way. We also show how to deal with nested factors in an efficient way.
Experiments show an improvement over min-sum diffusion, MPLP and subgradient
ascent algorithms on a number of computer vision and natural language
processing problems
The complexity of conservative finite-valued CSPs
We study the complexity of valued constraint satisfaction problems (VCSP). A
problem from VCSP is characterised by a \emph{constraint language}, a fixed set
of cost functions over a finite domain. An instance of the problem is specified
by a sum of cost functions from the language and the goal is to minimise the
sum. We consider the case of so-called \emph{conservative} languages; that is,
languages containing all unary cost functions, thus allowing arbitrary
restrictions on the domains of the variables. This problem has been studied by
Bulatov [LICS'03] for -valued languages (i.e. CSP), by
Cohen~\etal\ (AIJ'06) for Boolean domains, by Deineko et al. (JACM'08) for
-valued cost functions (i.e. Max-CSP), and by Takhanov (STACS'10) for
-valued languages containing all finite-valued unary cost
functions (i.e. Min-Cost-Hom).
We give an elementary proof of a complete complexity classification of
conservative finite-valued languages: we show that every conservative
finite-valued language is either tractable or NP-hard. This is the \emph{first}
dichotomy result for finite-valued VCSPs over non-Boolean domains.Comment: 15 page
Generalising tractable VCSPs defined by symmetric tournament pair multimorphisms
We study optimisation problems that can be formulated as valued constraint
satisfaction problems (VCSP). A problem from VCSP is characterised by a
\emph{constraint language}, a fixed set of cost functions taking finite and
infinite costs over a finite domain. An instance of the problem is specified by
a sum of cost functions from the language and the goal is to minimise the sum.
We are interested in \emph{tractable} constraint languages; that is, languages
that give rise to VCSP instances solvable in polynomial time. Cohen et al.
(AIJ'06) have shown that constraint languages that admit the MJN multimorphism
are tractable. Moreover, using a minimisation algorithm for submodular
functions, Cohen et al. (TCS'08) have shown that constraint languages that
admit an STP (symmetric tournament pair) multimorphism are tractable.
We generalise these results by showing that languages admitting the MJN
multimorphism on a subdomain and an STP multimorphisms on the complement of the
subdomain are tractable. The algorithm is a reduction to the algorithm for
languages admitting an STP multimorphism.Comment: 14 page
Potts model, parametric maxflow and k-submodular functions
The problem of minimizing the Potts energy function frequently occurs in
computer vision applications. One way to tackle this NP-hard problem was
proposed by Kovtun [19,20]. It identifies a part of an optimal solution by
running maxflow computations, where is the number of labels. The number
of "labeled" pixels can be significant in some applications, e.g. 50-93% in our
tests for stereo. We show how to reduce the runtime to maxflow
computations (or one {\em parametric maxflow} computation). Furthermore, the
output of our algorithm allows to speed-up the subsequent alpha expansion for
the unlabeled part, or can be used as it is for time-critical applications.
To derive our technique, we generalize the algorithm of Felzenszwalb et al.
[7] for {\em Tree Metrics}. We also show a connection to {\em -submodular
functions} from combinatorial optimization, and discuss {\em -submodular
relaxations} for general energy functions.Comment: Accepted to ICCV 201
- β¦