124 research outputs found
Search for new physics with top quark pairs in the fully hadronic final state at the ATLAS experiment
Fully hadronic final states containing top quark pairs (tt) are investigated using proton-proton collision data at a center of mass energy of 13 TeV recorded in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider at CERN. The bucket algorithm suppresses the large combinatorial background and is used to identify and reconstruct the tt system. It is applied in three analyses.
A model independent search for new heavy particles decaying to tt using 36 fb^-1 of data is presented. The analysis concentrates on an optimization of sensitivity at tt masses below 1.3 TeV. No excess from the Standard Model prediction is observed. Thus, upper limits at 95% C.L. are set on the production cross section times branching ratio of benchmark signal models excluding e.g. a topcolor assisted technicolor Z'_TC2 in the mass range from 0.59 TeV to 1.25 TeV.
The prospects of a search for the production of the Higgs boson in association with tt using 33 fb^-1 of data recorded solely in 2016 are studied. The expected sensitivity based on statistical uncertainties implies that at least 950 fb^-1 of data would be required for an observation.
From the additionally conducted trigger study it is concluded that developments at trigger level are required to use the analysis strategy presented in future searches for new physics
Accelerated expansion from structure formation
We discuss the physics of backreaction-driven accelerated expansion. Using
the exact equations for the behaviour of averages in dust universes, we explain
how large-scale smoothness does not imply that the effect of inhomogeneity and
anisotropy on the expansion rate is small. We demonstrate with an analytical
toy model how gravitational collapse can lead to acceleration. We find that the
conjecture of the accelerated expansion being due to structure formation is in
agreement with the general observational picture of structures in the universe,
and more quantitative work is needed to make a detailed comparison.Comment: 44 pages, 1 figure. Expanded treatment of topics from the Gravity
Research Foundation contest essay astro-ph/0605632. v2: Added references,
clarified wordings. v3: Published version. Minor changes and corrections,
added a referenc
Observational evidence for gravitationally trapped massive axion(-like) particles
Unexpected astrophysical observations can be explained by gravitationally
captured massive particles, which are produced inside the Sun or other Stars
and are accumulated over cosmic times. Their radiative decay in solar outer
space would give rise to a `self-irradiation' of the whole star, providing the
time-independent component of the corona heating source. In analogy with the
Sun-irradiated Earth atmosphere, the temperature and density gradient in the
corona - chromosphere transition region is suggestive for an omnipresent
irradiation of the Sun. The same scenario fits other astrophysical X-ray
observations. The radiative decay of a population of such elusive particles
mimics a hot gas. X-ray observatories, with an unrivalled sensitivity below ~10
keV, can search for such particles. The elongation angle relative to the Sun is
the relevant new parameter.Comment: 35 pages, LaTeX, 9 figures. Accepted by Astroparticle Physic
Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices
Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn)ₙ:(HfNiSn)₆₋ₙ, and 0 ⩽ n ⩽ 6 unit cells. The thermal conductivity (κ) showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured κ can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistances
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
Time-Resolved FRET -Based Approach for Antibody Detection - A New Serodiagnostic Concept
Peer reviewe
Pancreatic β-Cell Death in Response to Pro-Inflammatory Cytokines Is Distinct from Genuine Apoptosis
A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines
- …