9,152 research outputs found

    Constraints on the temperature inhomogeneity in quasar accretion discs from the ultraviolet-optical spectral variability

    Full text link
    The physical mechanisms of the quasar ultraviolet (UV)-optical variability are not well understood despite the long history of observations. Recently, Dexter & Agol presented a model of quasar UV-optical variability, which assumes large local temperature fluctuations in the quasar accretion discs. This inhomogeneous accretion disc model is claimed to describe not only the single-band variability amplitude, but also microlensing size constraints and the quasar composite spectral shape. In this work, we examine the validity of the inhomogeneous accretion disc model in the light of quasar UV-optical spectral variability by using five-band multi-epoch light curves for nearly 9 000 quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 region. By comparing the values of the intrinsic scatter σint\sigma_{\text{int}} of the two-band magnitude-magnitude plots for the SDSS quasar light curves and for the simulated light curves, we show that Dexter & Agol's inhomogeneous accretion disc model cannot explain the tight inter-band correlation often observed in the SDSS quasar light curves. This result leads us to conclude that the local temperature fluctuations in the accretion discs are not the main driver of the several years' UV-optical variability of quasars, and consequently, that the assumption that the quasar accretion discs have large localized temperature fluctuations is not preferred from the viewpoint of the UV-optical spectral variability.Comment: 14 pages, 7 figures and 2 tables, accepted for publication in MNRAS 2015 February

    Dynamics of Porous Dust Aggregates and Gravitational Instability of Their Disk

    Full text link
    We consider the dynamics of porous icy dust aggregates in a turbulent gas disk and investigate the stability of the disk. We evaluate the random velocity of porous dust aggregates by considering their self-gravity, collisions, aerodynamic drag, turbulent stirring and scattering due to gas. We extend our previous work by introducing the anisotropic velocity dispersion and the relaxation time of the random velocity. We find the minimum mass solar nebular model to be gravitationally unstable if the turbulent viscosity parameter α\alpha is less than about 4×10−34 \times 10^{-3}. The upper limit of α\alpha for the onset of gravitational instability is derived as a function of the disk parameters. We discuss the implications of the gravitational instability for planetesimal formation.Comment: 38 pages, 14 figures, accepted for publication in Ap

    Dynamics and Accretion of Planetesimals

    Full text link
    We review the basic dynamics and accretion of planetesimals by showing N-body simulations. The orbits of planetesimals evolve through two-body gravitational relaxation: viscous stirring increases the random velocity and dynamical friction realizes the equiparation of the random energy. In the early stage of planetesimal accretion the growth mode of planetesimals is runaway growth where larger planetesimals grow faster than smaller ones. When a protoplanet (runaway-growing planetesimal) exceeds a critical mass the growth mode shifts to oligarchic growth where similar-sized protoplanets grow keeping a certain orbital separation. The final stage of terrestrial planet formation is collision among protoplanets known as giant impacts. We also summarize the dynamical effects of disk gas on planets and the core accretion model for formation of gas giants and discuss the diversity of planetary systems
    • …
    corecore