53 research outputs found

    Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by Gβγ subunits and function as heteromultimers

    Get PDF
    Guanine nucleotide-binding proteins (G proteins) activate K+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits Gβ1 and G2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by Gβ subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K+ channels

    Intrinsic Gating Properties of a Cloned G Protein-activated Inward Rectifier K^+ Channel

    Get PDF
    The voltage-, time-, and K^+-dependent properties of a G protein-activated inwardly rectifying K^+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K^+ (V_K = 0 mV), voltage jumps from V_K to negative membrane potentials activated inward GIRK1 K^+ currents with three distinct time-resolved current components. GIRK1 current activation consisted of an instantaneous component that was followed by two components with time constants T_f~50 ms and T_s~400 ms. These activation time constants were weakly voltage dependent, increasing approximately twofold with maximal hyperpolarization from V_K. Voltage-dependent GIRK1 availability, revealed by tail currents at -80 mV after long prepulses, was greatest at potentials negative to V_K and declined to a plateau of approximately half the maximal level at positive voltages. Voltage-dependent GIRK1 availability shifted with V_K and was half maximal at V_K -20 mV; the equivalent gating charge was ~1.6 e^-. The voltage-dependent gating parameters of GIRK1 did not significantly differ for G protein activation by three heterologously expressed signaling pathways: m2 muscarinic receptors, serotonin 1A receptors, or G protein β1y2 subunits. Voltage dependence was also unaffected by agonist concentration. These results indicate that the voltage-dependent gating properties of GIRK1 are not due to extrinsic factors such as agonist-receptor interactions and G protein-channel coupling, but instead are analogous to the intrinsic gating behaviors of other inwardly rectifying K^+ channels

    Kir4.1 Potassium Channel Subunit Is Crucial for Oligodendrocyte Development and In Vivo Myelination

    Get PDF
    To understand the cellular and in vivo functions of specific K^+ channels in glia, we have studied mice with a null mutation in the weakly inwardly rectifying K^+ channel subunit Kir4.1. Kir4.1−/− mice display marked motor impairment, and the cellular basis is hypomyelination in the spinal cord, accompanied by severe spongiform vacuolation, axonal swellings, and degeneration. Immunostaining in the spinal cord of wild-type mice up to postnatal day 18 reveals that Kir4.1 is expressed in myelin-synthesizing oligodendrocytes, but probably not in neurons or glial fibrillary acidic protein-positive (GFAP-positive) astrocytes. Cultured oligodendrocytes from developing spinal cord of Kir4.1−/− mice lack most of the wild-type K^+ conductance, have depolarized membrane potentials, and display immature morphology. By contrast, cultured neurons from spinal cord of Kir4.1−/− mice have normal physiological characteristics. We conclude that Kir4.1 forms the major K^+ conductance of oligodendrocytes and is therefore crucial for myelination. The Kir4.1 knock-out mouse is one of the few CNS dysmyelinating or demyelinating phenotypes that does not involve a gene directly involved in the structure, synthesis, degradation, or immune response to myelin. Therefore, this mouse shows how an ion channel mutation could contribute to the polygenic demyelinating diseases

    Understanding the Role of the Circadian Clock Gene Bmal1 in Astrocytes

    Get PDF
    Faculty adviser: Dr. Paulo KofujiThe endogenous circadian rhythms in mammals are driven by a network of clock genes. These clock genes in turn regulate behavioral and physiological changes that follow a rhythm of approximately 24 hours. It is known that the brain region, the suprachiasmatic nucleus (SCN) in the hypothalamus, is essential to maintain the body circadian rhythm. The role of the neuronal cells in this circadian rhythm has been studied extensively. However, recent studies have shown a circadian rhythmicity in glial cells, such as the astrocytes, as well. This study is intended to add to the growing body of knowledge on the role of glial cells in circadian rhythm beyond the original idea that the central circadian pacemaker of mammals is solely driven by neurons. Based on prior studies in this laboratory and others, I hypothesize that the lack of Bmal1, a core clock gene, in astrocytes will impact circadian rhythmicity, at the molecular level (gene expression via assessment of core clock gene Per2 expression) as well as in terms of whole animal behavior (running wheel activity on different lighting regimens). Our studies indicate there is a loss of rhythm in astrocyte culture knock outs, but rhythm is maintained when analyzing locomotor activity. This suggests the gene in astrocytes may not be essential to maintain circadian rhythmicity. Understanding the role of the glial cells in circadian rhythmicity in mice, may help understand their role in circadian disorders. That in turn may help treat diseases that are correlated with chronic disruption of the circadian clock; such as diabetes, some cardiovascular diseases, and cancer.This research was supported by the Undergraduate Research Opportunities Program (UROP)

    Understanding the Role of the Adrenal Clock in the Stress Response

    Get PDF
    Faculty advisor: William EngelandThis research was supported by the Undergraduate Research Opportunities Program (UROP)

    Loss of Gq/11 Genes Does Not Abolish Melanopsin Phototransduction

    Get PDF
    In mammals, a subset of retinal ganglion cells (RGCs) expresses the photopigment melanopsin, which renders them intrinsically photosensitive (ipRGCs). These ipRGCs mediate various non-image-forming visual functions such as circadian photoentrainment and the pupillary light reflex (PLR). Melanopsin phototransduction begins with activation of a heterotrimeric G protein of unknown identity. Several studies of melanopsin phototransduction have implicated a G-protein of the Gq/11 family, which consists of Gna11, Gna14, Gnaq and Gna15, in melanopsin-evoked depolarization. However, the exact identity of the Gq/11 gene involved in this process has remained elusive. Additionally, whether Gq/11 G-proteins are necessary for melanopsin phototransduction in vivo has not yet been examined. We show here that the majority of ipRGCs express both Gna11 and Gna14, but neither Gnaq nor Gna15. Animals lacking the melanopsin protein have well-characterized deficits in the PLR and circadian behaviors, and we therefore examined these non-imaging forming visual functions in a variety of single and double mutants for Gq/11 family members. All Gq/11 mutant animals exhibited PLR and circadian behaviors indistinguishable from WT. In addition, we show persistence of ipRGC light-evoked responses in Gna11−/−; Gna14−/− retinas using multielectrode array recordings. These results demonstrate that Gq, G11, G14, or G15 alone or in combination are not necessary for melanopsin-based phototransduction, and suggest that ipRGCs may be able to utilize a Gq/11-independent phototransduction cascade in vivo

    Dysregulation of astrocytic Ca2+ signaling and gliotransmitter release in mouse models of α-synucleinopathies

    Get PDF
    α-Synuclein is a major component of Lewy bodies (LB) and Lewy neurites (LN) appearing in the postmortem brain of Parkinson's disease (PD) and other α-synucleinopathies. While most studies of α-synucleinopathies have focused on neuronal and synaptic alterations as well as dysfunctions of the astrocytic homeostatic roles, whether the bidirectional astrocyte–neuronal communication is affected in these diseases remains unknown. We have investigated whether the astrocyte Ca2+ excitability and the glutamatergic gliotransmission underlying astrocyte–neuronal signaling are altered in several transgenic mouse models related to α-synucleinopathies, i.e., mice expressing high and low levels of the human A53T mutant α-synuclein (G2-3 and H5 mice, respectively) globally or selectively in neurons (iSyn mice), mice expressing human wildtype α-synuclein (I2-2 mice), and mice expressing A30P mutant α-synuclein (O2 mice). Combining astrocytic Ca2+ imaging and neuronal electrophysiological recordings in hippocampal slices of these mice, we have found that compared to non-transgenic mice, astrocytes in G2-3 mice at different ages (1–6 months) displayed a Ca2+ hyperexcitability that was independent of neurotransmitter receptor activation, suggesting that the expression of α-synuclein mutant A53T altered the intrinsic properties of astrocytes. Similar dysregulation of the astrocyte Ca2+ signal was present in H5 mice, but not in I2-2 and O2 mice, indicating α-synuclein mutant-specific effects. Moreover, astrocyte Ca2+ hyperexcitability was absent in mice expressing the α-synuclein mutant A53T selectively in neurons, indicating that the effects on astrocytes were cell-autonomous. Consistent with these effects, glutamatergic gliotransmission was enhanced in G2-3 and H5 mice, but was unaffected in I2-2, O2 and iSyn mice. These results indicate a cell-autonomous effect of pathogenic A53T expression in astrocytes that may contribute to the altered neuronal and synaptic function observed in α-synucleinopathies. © 2023, The Author(s).Human Frontier Science Progra

    Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety

    Get PDF
    Knock-in mice were generated that harbored a leucine-to-serine mutation in the alpha4 nicotinic receptor near the gate in the channel pore. Mice with intact expression of this hypersensitive receptor display dominant neonatal lethality. These mice have a severe deficit of dopaminergic neurons in the substantia nigra, possibly because the hypersensitive receptors are continuously activated by normal extracellular choline concentrations. A strain that retains the neo selection cassette in an intron has reduced expression of the hypersensitive receptor and is viable and fertile. The viable mice display increased anxiety, poor motor learning, excessive ambulation that is eliminated by very low levels of nicotine, and a reduction of nigrostriatal dopaminergic function upon aging. These knock-in mice provide useful insights into the pathophysiology of sustained nicotinic receptor activation and may provide a model for Parkinson's disease
    • …
    corecore