7 research outputs found

    Transmissible Mycobacterium tuberculosis Strains Share Genetic Markers and Immune Phenotypes

    Get PDF
    Successful transmission of tuberculosis depends on the interplay of human behavior, host immune responses, and Mycobacterium tuberculosis virulence factors. Previous studies have been focused on identifying host risk factors associated with increased transmission, but the contribution of specific genetic variations in mycobacterial strains themselves are still unknown.This study was funded by the Portuguese Foundation for Science and Technology (FCT) (SFRH/BD/33902/2009 [H.N.-G.])

    Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects.

    Get PDF
    BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS: We investigated in vitro and in vivo effects of metformin in humans. RESULTS: Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. CONCLUSION: Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis

    Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis

    Get PDF
    Background: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography–mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results: CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10–1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood–CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22–1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusions: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy

    An optimized protocol for dual RNA-Seq of human macrophages infected with <i>Mycobacterium avium</i>

    Full text link
    AbstractRecently, dual RNA-sequencing (RNA-Seq) has been identified as a powerful tool to study host-pathogen interactions, which is particularly interesting for intracellular pathogens such as mycobacteria. However, due to the complexity of obtaining human host cells, many models rely on the usage of host cells derived from animals or cell lines, which does not accurately mimic the situation in the patient. Furthermore, due to the severe disbalance in host and pathogen RNA content, it is difficult to obtain sufficient sequencing depth for the infecting pathogen. Here, we present an optimized method to perform dual RNA-sequencing on human monocyte-derived macrophages (hMDMs) infected with Mycobacterium avium (M. avium). It is likely that, with slight modifications in multiplicity of infection (MOI) to account for differences in virulence, this methodology will be applicable for other difficult-to-lyse intracellular mycobacteria.</jats:p

    Transmissible Mycobacterium tuberculosis Strains Share Genetic Markers and Immune Phenotypes

    No full text
    RATIONALE: Successful transmission of tuberculosis depends on the interplay of human behavior, host immune responses and Mycobacterium tuberculosis virulence factors. Previous studies have focused on identifying host risk factors associated with increased transmission, while the contribution of specific genetic variations in mycobacterial strains themselves are still unknown. OBJECTIVES: To identify mycobacterial genetic markers associated with increased transmissibility, and examine whether these markers lead to altered in vitro immune responses. METHODS: Using a comprehensive (n = 10,389) tuberculosis registry and strain collection in the Netherlands, we identified a set of 100 M. tuberculosis strains either least or most likely to be transmitted after controlling for host factors. We subjected these strains to whole genome sequencing and evolutionary convergence analysis. We repeated this analysis in an independent validation cohort. A subset of the original strains was used to perform functional immunological experiments to measure in vitro cytokine production and neutrophil responses to strains with or without the identified mutations associated to increased transmissibility. MEASUREMENTS AND MAIN RESULTS: We identified the loci espE, PE-PGRS56, Rv0197, Rv2813-2814c and Rv2815-2816c as targets of convergent evolution among transmissible strains. We validated four of these regions in an independent set of strains, and demonstrated that mutations in these targets affected in vitro monocyte and T-cell cytokine production, neutrophil reactive oxygen species release and apoptosis. CONCLUSIONS: This study identifies genetic markers in convergent evolution of M. tuberculosis towards enhanced transmissibility in vivo that are associated with altered immune responses in vitro

    Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis

    Get PDF
    Background: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography–mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results: CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10–1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood–CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22–1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusions: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy. Funding: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z)

    Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis

    Full text link
    AbstractBackgroundCellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism.MethodsWe studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography mass-spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins.ResultsCSF tryptophan was associated with 60-day mortality from tuberculous meningitis (HR=1.16, 95%CI=1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and HIV-positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95%CI=1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis.ConclusionTBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of mortality. These findings may reveal new targets for host-directed therapy.FundingThis study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).</jats:sec
    corecore