326 research outputs found
Density Functional Theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes
To explore the potential of molecular gas treatment of freshly cut lithium
foils in non-electrolyte based passivation of high energy-density Li anodes,
density functional theory (DFT) has been used to study the decomposition of
molecular gases on metallic lithium surfaces. By combining DFT geometry
optimization and Molecular Dynamics, the effects of atmospheric (N2, O2, CO2)
and hazardous (F2, SO2) gas decomposition on Li(bcc) (100), (110), and (111)
surfaces on relative surface energies, work functions, and emerging electronic
and elastic properties are investigated. The simulations suggest that exposure
to different molecular gases can be used to induce and control reconstructions
of the metal Li surface and substantial changes (up to over 1 eV) in the work
function of the passivated system. Contrary to the other considered gases,
which form metallic adlayers, SO2 treatment emerges as the most effective in
creating an insulating passivation layer for dosages <= 1 mono-layer. The
substantial Li->adsorbate charge transfer and adlayer relaxation produce marked
elastic stiffening of the interface, with the smallest change shown by
nitrogen-treated adlayers
Work Function Evolution in Li Anode Processing
Toward improved understanding and control of the interactions of Li metal anodes with their processing environments, a combined X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) characterization of the effects that O-2, CO2, and N-2, the main gases in dry-atmosphere battery production lines, induced on a reproducibly clean Li surface at room temperature is presented here. XPS measurements demonstrate that O-2 is ten times more effective than CO2 at oxidizing metal Li. Notably, pure N-2 is shown to not dissociate on clean metal Li. UPS results indicate that decomposition of O-2 (CO2) reduces the work function of the Li surface by almost 1 eV, therefore increasing the reduction energy drive for the treated substrate by comparison to bare metallic Li. DFT simulations semiquantitatively account for these results on the basis of the effects of dissociative gas adsorption on the surface dipole density of the Li surface
Topology of the conceptual network of language
We define two words in a language to be connected if they express similar
concepts. The network of connections among the many thousands of words that
make up a language is important not only for the study of the structure and
evolution of languages, but also for cognitive science. We study this issue
quantitatively, by mapping out the conceptual network of the English language,
with the connections being defined by the entries in a Thesaurus dictionary. We
find that this network presents a small-world structure, with an amazingly
small average shortest path, and appears to exhibit an asymptotic scale-free
feature with algebraic connectivity distribution.Comment: 4 pages, 2 figures, Revte
SEI Growth and Depth Profiling on ZFO Electrodes by Soft X-Ray Absorption Spectroscopy
The evolution of the solid electrolyte interface (SEI) in carbon‐coated ZnFe2O4 (ZFO‐C) anodes is studied by soft X‐ray absorption spectroscopy (XAS). Experiments probe locally the SEI growth in the 2–100 nm range, using both total electron (TEY) and total fluorescence (TFY) yield techniques. XAS analysis shows that the SEI grows preferentially around the ZFO‐C nanoparticles
Direct Evidence of Endothelial Dysfunction and Glycocalyx Loss in Dermal Biopsies of Patients With Chronic Kidney Disease and Their Association With Markers of Volume Overload
Cardiovascular morbidity is a major problem in patients with chronic kidney disease (CKD) and endothelial dysfunction (ED) is involved in its development. The luminal side of the vascular endothelium is covered by a protective endothelial glycocalyx (eGC) and indirect evidence indicates eGC loss in CKD patients. We aimed to investigate potential eGC loss and ED in skin biopsies of CKD patients and their association with inflammation and volume overload. During living kidney transplantation procedure, abdominal skin biopsies were taken from 11 patients with chronic kidney disease stage 5 of whom 4 were treated with hemodialysis and 7 did not receive dialysis treatment. Nine healthy kidney donors served as controls. Biopsies were stained and quantified for the eGC marker Ulex europaeus agglutinin-1 (UEA1) and the endothelial markers vascular endothelial growth factor-2 (VEGFR2) and von Willebrand factor (vWF) after double staining and normalization for the pan-endothelial marker cluster of differentiation 31. We also studied associations between quantified log-transformed dermal endothelial markers and plasma markers of inflammation and hydration status. Compared to healthy subjects, there was severe loss of the eGC marker UEA1 (P < 0.01) while VEGFR2 was increased in CKD patients, especially in those on dialysis (P = 0.01). For vWF, results were comparable between CKD patients and controls. Skin water content was identical in the three groups, which excluded dermal edema as an underlying cause in patients with CKD. The dermal eGC/ED markers UEA1, VEGFR2, and vWF all associated with plasma levels of NT-proBNP and sodium (all R2 > 0.29 and P < 0.01), except for vWF that only associated with plasma NT-proBNP. This study is the first to show direct histopathological evidence of dermal glycocalyx loss and ED in patients with CKD. In line with previous research, our results show that ED associates with markers of volume overload arguing for strict volume control in CKD patients
Ectopic Cushing' syndrome caused by a neuroendocrine carcinoma of the mesentery
BACKGROUND: ACTH overproduction within the pituitary gland or ectopically leads to hypercortisolism. Here, we report the first case of Cushing' syndrome caused by an ectopic ACTH-secreting neuroendocrine carcinoma of the mesentery. Moreover, diagnostic procedures and pitfalls associated with ectopic ACTH-secreting tumors are demonstrated and discussed. CASE PRESENTATION: A 41 year-old man presented with clinical features and biochemical tests suggestive of ectopic Cushing's syndrome. First, subtotal thyroidectomy was performed without remission of hypercortisolism, because an octreotide scan showed increased activity in the left thyroid gland and an ultrasound revealed nodules in both thyroid lobes one of which was autonomous. In addition, the patient had a 3 mm hypoenhancing lesion of the neurohypophysis and a 1 cm large adrenal tumor. Surgical removal of the pituitary lesion within the posterior lobe did not improve hypercortisolism and we continued to treat the patient with metyrapone to block cortisol production. At 18-months follow-up from initial presentation, we detected an ACTH-producing neuroendocrine carcinoma of the mesentery by using a combination of octreotide scan, computed tomography scan, and positron emission tomography. Intraoperatively, use of a gamma probe after administration of radiolabeled (111)In-pentetreotide helped identify the mesenteric neuroendocrine tumor. After removal of this carcinoma, the patient improved clinically. Laboratory testing confirmed remission of hypercortisolism. An octreotide scan 7 months after surgery showed normal results. CONCLUSION: This case underscores the diagnostic challenge in identifying an ectopic ACTH-producing tumor and the pluripotency of cells, in this case of mesenteric cells that can start producing and secreting ACTH. It thereby helps elucidate the pathogenesis of neuroendocrine tumors. This case also suggests that patients with ectopic Cushing's syndrome and an octreotide scan positive in atypical locations may benefit from explorative radioguided surgery using (111)In-pentetreotide and a gamma probe
Review of current Severe Accident Management (SAM) approaches for Nuclear Power Plants in Europe
The Fukushima accidents highlighted that both the in-depth understanding of such sequences and the development or improvement of adequate Severe Accident Management (SAM) measures are essential in order to further increase the safety of the nuclear power plants operated in Europe. To support this effort, the CESAM (Code for European Severe Accident Management) R&D project, coordinated by GRS, started in April 2013 for 4 years in the 7th EC Framework Programme of research and development of the European Commission. It gathers 18 partners from 12 countries: IRSN, AREVA NP SAS and EDF (France), GRS, KIT, USTUTT and RUB (Germany), CIEMAT (Spain), ENEA (Italy), VUJE and IVS (Slovakia), LEI (Lithuania), NUBIKI (Hungary), INRNE (Bulgaria), JSI (Slovenia), VTT (Finland), PSI (Switzerland), BARC (India) plus the European Commission Joint Research Center (JRC).
The CESAM project focuses on the improvement of the ASTEC (Accident Source Term Evaluation Code) computer code. ASTEC,, jointly developed by IRSN and GRS, is considered as the European reference code since it capitalizes knowledge from the European R&D on the domain. The project aims at its enhancement and extension for use in severe accident management (SAM) analysis of the nuclear power plants (NPP) of Generation II-III presently under operation or foreseen in near future in Europe, spent fuel pools included.
In the frame of the CESAM project one of the tasks consisted in the preparation of a report providing an overview of the Severe Accident Management (SAM) approaches in European Nuclear Power Plants to serve as a basis for further ASTEC improvements. This report draws on the experience in several countries from introducing SAMGs and on substantial information that has become available within the EU “stress test”.
To disseminate this information to a broader audience, the initial CESAM report has been revised to include only public available information. This work has been done with the agreement and in collaboration with all the CESAM project partners. The result of this work is presented here.JRC.F.5-Nuclear Reactor Safety Assessmen
Recommended from our members
DNA methylation-based classification of central nervous system tumours.
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology
- …