510 research outputs found

### Nanotube-based scanning rotational microscope

A scheme of the scanning rotational microscope is designed. This scheme is
based on using carbon nanotubes simultaneously as a probe tip and as a bolt/nut
pair which converts translational displacements of two piezo actuators into
pure rotation of the probe tip. First-principles calculations of the
interaction energy between movable and rotational parts of the microscope
confirms the capability for its operation. The scanning rotational microscope
with a chemically functionalized nanotube-based tip can be used to study how
the interaction between individual molecules or a molecule and a surface
depends on their relative orientation.Comment: 4 pages, 3 figure

### The Wrong Kind of Gravity

The KPZ formula shows that coupling central charge less than one spin models
to 2D quantum gravity dresses the conformal weights to get new critical
exponents, where the relation between the original and dressed weights depends
only on the central charge. At the discrete level the coupling to 2D gravity is
effected by putting the spin models on annealed ensembles of planar random
graphs or their dual triangulations, where the connectivity fluctuates on the
same time-scale as the spins.
Since the sole determining factor in the dressing is the central charge, one
could contemplate putting a spin model on a quenched ensemble of 2D gravity
graphs with the ``wrong'' central charge. We might then expect to see the
critical exponents appropriate to the central charge used in generating the
graphs. In such cases the KPZ formula could be interpreted as giving a
continuous line of critical exponents which depend on this central charge. We
note that rational exponents other than the KPZ values can be generated using
this procedure for the Ising, tricritical Ising and 3-state Potts models.Comment: 8 pages, no figure

### RG Equations from Whitham Hierarchy

The second derivatives of prepotential with respect to Whitham time-variables
in the Seiberg-Witten theory are expressed in terms of Riemann theta-functions.
These formulas give a direct transcendental generalization of algebraic ones
for the Kontsevich matrix model. In particular case they provide an explicit
derivation of the renormalization group (RG) equation proposed recently in
papers on the Donaldson theory.Comment: 24 pages, LaTeX, no figures (references improved

### Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

We report an unusual set of observations of waves in a large prominence
pillar which consist of pulses propagating perpendicular to the prominence
magnetic field. We observe a huge quiescent prominence with the Solar Dynamics
Observatory (SDO) Atmospheric Imaging Assembly (AIA) in EUV on 2012 October 10
and only a part of it, the pillar, which is a foot or barb of the prominence,
with the Hinode Solar Optical Telescope (SOT) (in Ca II and H\alpha lines), Sac
Peak (in H\alpha, H\beta\ and Na-D lines), THEMIS ("T\'elescope
H\'eliographique pour l' Etude du Magn\'etisme et des Instabilit\'es Solaires")
with the MTR (MulTi-Raies) spectropolarimeter (in He D_3 line). The THEMIS/MTR
data indicates that the magnetic field in the pillar is essentially horizontal
and the observations in the optical domain show a large number of horizontally
aligned features on a much smaller scale than the pillar as a whole. The data
is consistent with a model of cool prominence plasma trapped in the dips of
horizontal field lines. The SOT and Sac Peak data over the 4 hour observing
period show vertical oscillations appearing as wave pulses. These pulses, which
include a Doppler signature, move vertically, perpendicular to the field
direction, along thin quasi-vertical columns in the much broader pillar. The
pulses have a velocity of propagation of about 10 km/s, a period about 300 sec,
and a wavelength around 2000 km. We interpret these waves in terms of fast
magneto-sonic waves and discuss possible wave drivers.Comment: Accepted for publication in The Astrophysical Journa

### Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride

Dislocations corresponding to a change of stacking in two-dimensional
hexagonal bilayers, graphene and boron nitride, and associated with boundaries
between commensurate domains are investigated using the two-chain
Frenkel-Kontorova model on top of ab initio calculations. Structural
transformations of bilayers in which the bottom layer is stretched and the
upper one is left to relax freely are considered for gradually increased
elongation of the bottom layer. Formation energies of dislocations, dislocation
width and orientation of the boundary between commensurate domains are analyzed
depending on the magnitude and direction of elongation. The second-order phase
transition from the commensurate phase to the incommensurate one with multiple
dislocations is predicted to take place at some critical elongation. The order
parameter for this transition corresponds to the density of dislocations, which
grows continuously upon increasing the elongation of the bottom layer above the
critical value. In graphene and metastable boron nitride with the layers
aligned in the same direction, where elementary dislocations are partial, this
transition, however, is preceded by formation of the first dislocation at the
elongation smaller than the critical one. The phase diagrams including this
intermediate state are plotted in coordinates of the magnitude and direction of
elongation of the bottom layer.Comment: 15 pages, 9 figure

### Transformation of amorphous carbon clusters to fullerenes

Transformation of amorphous carbon clusters into fullerenes under high
temperature is studied using molecular dynamics simulations at microsecond
times. Based on the analysis of both structure and energy of the system, it is
found that fullerene formation occurs in two stages. Firstly, fast
transformation of the initial amorphous structure into a hollow sp$^2$ shell
with a few chains attached occurs with a considerable decrease of the potential
energy and the number of atoms belonging to chains and to the amorphous domain.
Then, insertion of remaining carbon chains into the sp$^2$ network takes place
at the same time with the fullerene shell formation. Two types of defects
remaining after the formation of the fullerene shell are revealed: 7-membered
rings and single one-coordinated atoms. One of the fullerene structures
obtained contains no defects at all, which demonstrates that defect-free carbon
cages can be occasionally formed from amorphous precursors directly without
defect healing. No structural changes are observed after the fullerene
formation, suggesting that defect healing is a slow process in comparison with
the fullerene shell formation. The schemes of the revealed reactions of chain
atoms insertion into the fullerene shell just before its completion are
presented. The results of the performed simulations are summarized within the
paradigm of fullerene formation due to selforganization of the carbon system.Comment: 35 pages, 9 figure

### Power-Law Statistics Of Driven Reconnection In The Magnetically Closed Corona

Numerous observations have revealed that power-law distributions are
ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme
ultraviolet radiation, and radio waves all display power-law frequency
distributions. Since magnetic reconnection is the driving mechanism for many
energetic solar phenomena, it is likely that reconnection events themselves
display such power-law distributions. In this work, we perform numerical
simulations of the solar corona driven by simple convective motions at the
photospheric level. Using temperature changes, current distributions, and
Poynting fluxes as proxies for heating, we demonstrate that energetic events
occurring in our simulation display power-law frequency distributions, with
slopes in good agreement with observations. We suggest that the
braiding-associated reconnection in the corona can be understood in terms of a
self-organized criticality model driven by convective rotational motions
similar to those observed at the photosphere.Comment: Accepted by Ap

- …