160 research outputs found

    Computing metric hulls in graphs

    Full text link
    We prove that, given a closure function the smallest preimage of a closed set can be calculated in polynomial time in the number of closed sets. This confirms a conjecture of Albenque and Knauer and implies that there is a polynomial time algorithm to compute the convex hull-number of a graph, when all its convex subgraphs are given as input. We then show that computing if the smallest preimage of a closed set is logarithmic in the size of the ground set is LOGSNP-complete if only the ground set is given. A special instance of this problem is computing the dimension of a poset given its linear extension graph, that was conjectured to be in P. The intent to show that the latter problem is LOGSNP-complete leads to several interesting questions and to the definition of the isometric hull, i.e., a smallest isometric subgraph containing a given set of vertices SS. While for S=2|S|=2 an isometric hull is just a shortest path, we show that computing the isometric hull of a set of vertices is NP-complete even if S=3|S|=3. Finally, we consider the problem of computing the isometric hull-number of a graph and show that computing it is Σ2P\Sigma^P_2 complete.Comment: 13 pages, 3 figure

    Cuts in matchings of 3-connected cubic graphs

    Full text link
    We discuss conjectures on Hamiltonicity in cubic graphs (Tait, Barnette, Tutte), on the dichromatic number of planar oriented graphs (Neumann-Lara), and on even graphs in digraphs whose contraction is strongly connected (Hochst\"attler). We show that all of them fit into the same framework related to cuts in matchings. This allows us to find a counterexample to the conjecture of Hochst\"attler and show that the conjecture of Neumann-Lara holds for all planar graphs on at most 26 vertices. Finally, we state a new conjecture on bipartite cubic oriented graphs, that naturally arises in this setting.Comment: 12 pages, 5 figures, 1 table. Improved expositio

    Chomp on numerical semigroups

    Get PDF
    We consider the two-player game chomp on posets associated to numerical semigroups and show that the analysis of strategies for chomp is strongly related to classical properties of semigroups. We characterize, which player has a winning-strategy for symmetric semigroups, semigroups of maximal embedding dimension and several families of numerical semigroups generated by arithmetic sequences. Furthermore, we show that which player wins on a given numerical semigroup is a decidable question. Finally, we extend several of our results to the more general setting of subsemigroups of N×T\mathbb{N} \times T, where TT is a finite abelian group.Comment: 22 pages, 14 figures, 1 table (improved exposition

    Hypercellular graphs: partial cubes without Q3Q_3^- as partial cube minor

    Full text link
    We investigate the structure of isometric subgraphs of hypercubes (i.e., partial cubes) which do not contain finite convex subgraphs contractible to the 3-cube minus one vertex Q3Q^-_3 (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). Extending similar results for median and cellular graphs, we show that the convex hull of an isometric cycle of such a graph is gated and isomorphic to the Cartesian product of edges and even cycles. Furthermore, we show that our graphs are exactly the class of partial cubes in which any finite convex subgraph can be obtained from the Cartesian products of edges and even cycles via successive gated amalgams. This decomposition result enables us to establish a variety of results. In particular, it yields that our class of graphs generalizes median and cellular graphs, which motivates naming our graphs hypercellular. Furthermore, we show that hypercellular graphs are tope graphs of zonotopal complexes of oriented matroids. Finally, we characterize hypercellular graphs as being median-cell -- a property naturally generalizing the notion of median graphs.Comment: 35 pages, 6 figures, added example answering Question 1 from earlier draft (Figure 6.

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure
    corecore