71 research outputs found

    Measurement of nuclear dependence in inclusive antineutrino scattering

    No full text
    One of the fundamental questions in physics is the matter-antimatter asymmetry of the Universe, explored through charge-parity violation searches in neutrino oscillation experiments. Next-generation oscillation experiments like DUNE need to constrain the systematic uncertainties arising from our understanding of (anti)neutrino-nucleus scattering to within a few percent to achieve their physics goals. MINERvA, a dedicated (anti)neutrino-nucleus scattering experiment, plays a crucial role in constraining these uncertainties. This thesis presents MINERvA's first high-statistics direct measurement of nuclear dependence in charged-current inclusive antineutrino scattering on carbon, hydrocarbon, iron, and lead as a function of antimuon transverse momentum, p_T, and Bjorken x. The analysis utilises interactions with a mean antineutrino energy of approximately 6 GeV, with reconstructed antimuons having a scattering angle of less than 17° relative to the antineutrino beam and an antimuon energy of 2-20 GeV. The measured per-nucleon differential cross-sections are reported with a precision of 7-9%, while the cross-section ratios of carbon, iron, and lead to hydrocarbon have uncertainties of 5% or less. The cross-sections for iron and lead indicate strong suppression at low p_T and Bjorken x, and an enhancement at high p_T. These effects are observed to be more pronounced with the increasing size of the target nucleus and are not reproduced by the underlying simulation prediction. Comparisons to alternative models used in current (anti)neutrino interaction generators show some improvements in modelling over the base prediction model, yet they are still unable to fully reproduce the observed nuclear dependence in this analysis. Importantly, the analysis provides a direct test of nuclear effects in inclusive antineutrino scattering, with major contributions from resonant pion production, deep inelastic scattering, and the transition region between these channels, which will be significant in DUNE. This measurement also represents one of the largest antineutrino datasets in this energy regime analysed to date.Open Acces

    R&D on an Innovative Silicon Photomultiplier-based Calibration System for the T2K Scintillator Tracker Detector

    No full text
    The T2K collaboration decided to upgrade the ND280 to collect enough statistics to search for CP violation. In order to reduce the neutrino oscillation systematic uncertainties, a new highly granular, fully active scintillator detector SuperFGD with a light readout interface based on Sil- icon Photomultipliers (SiPM) is introduced. As the SiPMs characteristics depend on voltage and temperature, a calibration system to achieve consistent measurements across all channels and to monitor the SiPM performance as a function of time is crucial. The conceptual design is similar to the technique proposed for the CALICE collaboration – notched fibres. To show the feasibil- ity of the LED-based calibration system with notched fibres on a wavelength shifting (WLS) fibre readout system, the light-yield of two notched squared 1 × 1 mm2 fibres with double cladding, clear Saint-Gobain and WLS Kuraray, were measured obtaining satisfactory results with the light yield relatively uniform along the fibre. Furthermore, a possible integration in the SuperFGD mechanical box was demonstrated

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light

    No full text
    Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 770 t of total liquid argon mass with 410 t of fiducial mass. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen.Doping of liquid argon TPCs (LArTPCs) with a smallconcentration of xenon is a technique for light-shifting andfacilitates the detection of the liquid argon scintillationlight. In this paper, we present the results of the first dopingtest ever performed in a kiloton-scale LArTPC. From February to May2020, we carried out this special run in the single-phase DUNE FarDetector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of totalliquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogencontamination was present during the xenon doping campaign. The goalof the run was to measure the light and charge response of thedetector to the addition of xenon, up to a concentration of18.8 ppm. The main purpose was to test the possibility forreduction of non-uniformities in light collection, caused bydeployment of photon detectors only within the anode planes. Lightcollection was analysed as a function of the xenon concentration, byusing the pre-existing photon detection system (PDS) of ProtoDUNE-SPand an additional smaller set-up installed specifically for thisrun. In this paper we first summarize our current understanding ofthe argon-xenon energy transfer process and the impact of thepresence of nitrogen in argon with and without xenon dopant. We thendescribe the key elements of ProtoDUNE-SP and the injection methoddeployed. Two dedicated photon detectors were able to collect thelight produced by xenon and the total light. The ratio of thesecomponents was measured to be about 0.65 as 18.8 ppm of xenon wereinjected. We performed studies of the collection efficiency as afunction of the distance between tracks and light detectors,demonstrating enhanced uniformity of response for the anode-mountedPDS. We also show that xenon doping can substantially recover lightlosses due to contamination of the liquid argon by nitrogen.Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore