88 research outputs found
Blind Source Separation with Compressively Sensed Linear Mixtures
This work studies the problem of simultaneously separating and reconstructing
signals from compressively sensed linear mixtures. We assume that all source
signals share a common sparse representation basis. The approach combines
classical Compressive Sensing (CS) theory with a linear mixing model. It allows
the mixtures to be sampled independently of each other. If samples are acquired
in the time domain, this means that the sensors need not be synchronized. Since
Blind Source Separation (BSS) from a linear mixture is only possible up to
permutation and scaling, factoring out these ambiguities leads to a
minimization problem on the so-called oblique manifold. We develop a geometric
conjugate subgradient method that scales to large systems for solving the
problem. Numerical results demonstrate the promising performance of the
proposed algorithm compared to several state of the art methods.Comment: 9 pages, 2 figure
A Joint Intensity and Depth Co-Sparse Analysis Model for Depth Map Super-Resolution
High-resolution depth maps can be inferred from low-resolution depth
measurements and an additional high-resolution intensity image of the same
scene. To that end, we introduce a bimodal co-sparse analysis model, which is
able to capture the interdependency of registered intensity and depth
information. This model is based on the assumption that the co-supports of
corresponding bimodal image structures are aligned when computed by a suitable
pair of analysis operators. No analytic form of such operators exist and we
propose a method for learning them from a set of registered training signals.
This learning process is done offline and returns a bimodal analysis operator
that is universally applicable to natural scenes. We use this to exploit the
bimodal co-sparse analysis model as a prior for solving inverse problems, which
leads to an efficient algorithm for depth map super-resolution.Comment: 13 pages, 4 figure
Model-based learning of local image features for unsupervised texture segmentation
Features that capture well the textural patterns of a certain class of images
are crucial for the performance of texture segmentation methods. The manual
selection of features or designing new ones can be a tedious task. Therefore,
it is desirable to automatically adapt the features to a certain image or class
of images. Typically, this requires a large set of training images with similar
textures and ground truth segmentation. In this work, we propose a framework to
learn features for texture segmentation when no such training data is
available. The cost function for our learning process is constructed to match a
commonly used segmentation model, the piecewise constant Mumford-Shah model.
This means that the features are learned such that they provide an
approximately piecewise constant feature image with a small jump set. Based on
this idea, we develop a two-stage algorithm which first learns suitable
convolutional features and then performs a segmentation. We note that the
features can be learned from a small set of images, from a single image, or
even from image patches. The proposed method achieves a competitive rank in the
Prague texture segmentation benchmark, and it is effective for segmenting
histological images
An Adaptive Dictionary Learning Approach for Modeling Dynamical Textures
Video representation is an important and challenging task in the computer
vision community. In this paper, we assume that image frames of a moving scene
can be modeled as a Linear Dynamical System. We propose a sparse coding
framework, named adaptive video dictionary learning (AVDL), to model a video
adaptively. The developed framework is able to capture the dynamics of a moving
scene by exploring both sparse properties and the temporal correlations of
consecutive video frames. The proposed method is compared with state of the art
video processing methods on several benchmark data sequences, which exhibit
appearance changes and heavy occlusions
- …